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ABSTRACT 

 

Effectiveness measures provide decision makers feedback on the impact of 

deliberate actions and affect critical issues such as allocation of scarce resources, as well 

as whether to maintain or change existing strategy.  Currently, however, there is no 

formal foundation for formulating effectiveness measures.  This research presents a new 

framework for effectiveness measurement from both a theoretical and practical view.  

First, accepted effects-based principles, as well as fundamental measurement concepts are 

combined into a general, domain independent, effectiveness measurement methodology.  

This is accomplished by defining effectiveness measurement as the difference, or 

conceptual distance from a given system state to some reference system state (e.g. desired 

end-state).  Then, by developing system attribute measures such that they yield a system 

state-space that can be characterized as a metric space, differences in system states 

relative to the reference state can be gauged over time, yielding a generalized, axiomatic 

definition of effectiveness measurement.  The effectiveness measurement framework is 

then extended to mitigate the influence of measurement error and uncertainty by 

employing Kalman filtering techniques.  Finally, the pragmatic nature of the approach is 

illustrated by measuring the effectiveness of a notional, security force response strategy 

in a scenario involving a terrorist attack on a United States Air Force base. 
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

I.  INTRODUCTION 

 
THE PROBLEM OF MEASURING EFFECTIVENESS 

One accurate measurement is worth a thousand expert opinions. 
    – ADMIRAL GRACE HOPPER, 1906 – 1992 
 

Measurement is an integral part of modern life.  We measure our surroundings, 

ourselves, and the passage of time.  Measurement is needed to characterize the universe 

and everything in it (Potter, 2000:7).  Some have even suggested our advancement as a 

civilization is a direct consequence of our ability to measure (Sydenham, 2003:3).  

Despite its seemingly overwhelming importance, measurement is generally regarded with 

a ‘just look and see’ attitude; the complexities surrounding measurement often avoid 

critical analysis (Margenau, 1959:164).  This is largely due to the concept of 

measurement being closely aligned with the physical sciences where measurement is 

relatively more deterministic.  Other disciplines do not enjoy this level of objectivity.  

Fields in the social and behavioral sciences examine events, processes, and other complex 

phenomenon that are difficult to understand, let alone measure (Geisler, 2000:35).  

Another endeavor where measurement is difficult is military operations (Roche, 

1991:165).  Military operations are characterized by a dynamic and unpredictable 

environment (Clausewitz, 1976:119).  In this complex arena, one would like to measure 

the outcome of deliberate actions and specifically be able to measure them relative to a 

desired end-state.  One theory on how to achieve such desired end-states in military 

operations is called Effects-based Operations (EBO). 
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Effects-based Operations are activities designed to achieve specific outcomes 

versus activities focused on particular targets or tasks (Deptula, 2001a:53; Lazarus, 

2005:23).  EBO offers the potential to effectively and efficiently attain objectives across a 

wide spectrum of complex environments (Henningsen, 2003:3).  Based on its potential 

and supported by results since the 1991 Gulf War, joint doctrine and service doctrine, 

particularly Air Force doctrine, has undergone change to reflect the EBO concepts.  

Despite the tremendous promise of EBO, a key challenge is assessment or measuring the 

outcomes of military activities relative to the desired end-state (Glenn, 2002; Murray, 

2001; Bowman, 2002:24).  History has shown theory is of limited value if not supported 

by an empirically feasible measurement method (Scott, 1958:113; Zuse, 1998:84).  The 

challenge in military operations is the system of interest is often ill-defined, exhibiting 

dynamic, non-deterministic relationships. 

Although EBO is typically used in a military context, the problem of measuring 

the influence, or effectiveness, of actions in a complex, dynamical situation is certainly 

not unique to the military (Da Rocha, 2005:31).  Any situation where there is not a direct 

and intuitive way to measure progress towards a desired outcome (e.g. economics and 

law/policy making) relies on actions to shape the situation’s environment in order to 

bring about the desired end-state.  However, feedback is required to ensure the actions 

taken are moving the situation in a favorable direction.  This feedback is in the form of 

effectiveness measures.  Effectiveness measures provide the critical link between strategy 

and execution, essentially translating strategy into reality (Melnyk, 2004:209).  

Effectiveness measures amount to ‘cognitive shortcuts’ in the face of an overwhelming 

complex reality (Gartner, 1997:43).  Effectiveness measures influence how decision 
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makers assess the impact of deliberate actions and affect critical issues such as resource 

allocation as well as whether to maintain or change existing strategy (Gartner, 1997:1).  

Currently, however, there is no formal foundation or framework for formulating these 

effectiveness measurements.  Lack of a foundation and framework can lead to erroneous 

measures of effectiveness as exemplified in the following discussion between General 

George Patton and General Orlando Ward during WWII (Perret, 1991:156): 

“How many officers did you lose today?” asked Patton.  “We were 
fortunate,” Ward replied.  “We didn’t lose any officers.”  “Goddamit, 
Ward, that’s not fortunate!  That’s bad for the morale of the enlisted men.  
I want you to get more officers killed.”  A brief pause followed before 
Ward said, “You’re not serious, are you?”  “Yes, goddamit, I’m serious!  I 
want you to put some officers out as observers,” said Patton.  “Keep them 
well up front until a couple get killed.  It’s good for enlisted morale.” 
 

RESEARCH OVERVIEW 

This research presents a new framework for effectiveness measurement from both 

a theoretical and practical view.  The research begins by examining the foundational 

aspects of measurement in a generic sense.  The examination includes a brief history of 

measurement to help establish a context for the many views of measurement as well as 

establish a basis for the presentation of Measurement Theory.  Attention then turns to 

application of measurement and the concepts surrounding measurement systems to 

establish a basis for the problems encountered in applied measurement.  Moving from 

measurement in general, to measurement of military effectiveness, an overview of 

military EBO is provided and compared to a formalized and disciplined framework for 

decision making, which is followed by a detailed look at ‘effects’.  A brief survey of 

concepts and military effectiveness modeling approaches is then provided.  Combining 

these general measurement concepts, as well as effect specific concepts, a general, 
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domain independent, effectiveness measurement methodology is established.  This is 

accomplished by defining effectiveness measurement as the difference, or conceptual 

distance from a given system state to some reference system state (e.g. desired end-state).  

Then, by developing system attribute measures such that they yield a system state-space 

that can be characterized as a metric space, differences in system states relative to the 

reference state can be gauged over time, yielding a generalized, axiomatic definition of 

effectiveness measurement. 

As noted, military operations, as well as other activities where measurement is 

critical, are conducted in environments that can be characterized as ill-defined and 

exhibiting dynamic, non-deterministic relationships.  Measurements in these 

environments can contain error yielding uncertainty concerning the true state of the 

system resulting from deliberate actions.  To address this problem with regard to 

effectiveness measurement, various probabilistic reasoning approaches are explored.  The 

effectiveness measurement framework is then extended to mitigate the influence of 

measurement error and uncertainty by employing Kalman filtering techniques. 

The effectiveness measurement methodology, along with the probabilistic 

reasoning technique, forms the basis for the research key result which is a Theory of 

Effectiveness Measurement establishing the necessary and sufficient conditions for such 

activities.  Measurement itself, however, is an applied task.  Thus, to demonstrate the 

pragmatic nature of the proposed approach, the effectiveness measurement framework is 

illustrated by measuring the effectiveness of a notional, security force response strategy 

in a scenario involving a terrorist attack on a United States Air Force base. 
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

II.  BACKGROUND 

 
PREVIOUS WORK 

The following sections of this chapter outline key measurement concepts as they 

relate to effectiveness measurement.  The initial three sections are intended to be generic 

in nature and applicable to any endeavor requiring measurement, covering fundamental 

notions about measurement, followed by a summary of the representational view of 

measurement and concepts relating to applied measurement.  The initial three sections 

will identify the general elements required for an effectiveness measurement framework.  

Then, moving from the general to the specific, an introduction to Effects-based 

Operations (EBO) and effects, as well as a brief survey of approaches for modeling 

effects, is provided.  These effects related sections will identify the specific elements to 

make a measurement framework unique for effectiveness measurement. 

MEASUREMENT FUNDAMENTALS 

Not everything that can be counted counts, 
and not everything that counts can be counted. 

      – EINSTEIN, 1879 – 1955 
 

Measurement is the objective representation of objects, processes, and 

phenomenon (Finkelstein, 1984:25).  Measurement captures information about these 

systems through their attributes (also known as characteristics, features, or properties).  

These attributes can be either directly or indirectly observable (Cropley, 1998:238).  

Additionally, a system embodies a set of elements where relationships exist between the 

elements (Feuchter, 2000:12; Artley, 2001b:3).  Thus, a system X is defined by the 
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attributes xi chosen to represent it: 

 X = 〈 x1, x2,…, xi 〉 ( 1 ) 

Although objective, an important distinction is that measurement is also an 

abstraction.  This challenging aspect of measurement makes it imperative to have 

formalized frameworks and theories for measurement in order to clarify concepts and 

ideas about measurement within a particular domain.  Measurement is an abstraction 

because measurement does not directly represent the system but only addresses the 

attributes selected to represent it (Pfanzagl, 1971:16).  In this light, measurement can be 

thought of as the process of assigning symbols to the attributes of a system such that the 

assigned symbols reflect the underlying nature of the attributes (Caws, 1959:5).  This 

nature is defined by relations evident when attribute measurements are compared 

(Pfanzagl, 1971:16). 

The assigned symbols can take on any form as long as the set of symbols reflect 

or can take on the same underlying structure as the attributes being measured (i.e. 

homomorphic).  Typically, the symbols assigned are numerals, where numerals are the 

material representation of the abstract concept of numbers (Campbell, 1957:295).  The 

assignment of numerals then allows the formal language of mathematics to be applied, 

enabling further insight into the system’s behavior (Torgerson, 1958:1) or more 

specifically the system’s change in behavior, which is central to effectiveness 

measurement. 

All measurement is carried out within a context (Morse, 2003:2).  This context is 

shaped by a purpose, existing knowledge, capabilities, and resources; all of which 

influence the measurement process (Brakel, 1984:50).  Within this context, measurement 
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begins by identifying the system of interest and the attributes to be used in defining the 

system as depicted in Figure 1.  Attribute selection is crucial since the validity of a 

system measurement is influenced by the number of attributes used in the measurement 

(Potter, 2000:16).  Although fewer attributes will simplify the measurement process, too 

few can result in poor and/or misleading insights about the system (Sink, 1985:68).  

Attributes are usually measured independent of one another (Pfanzagl, 1971:15) but 

hierarchies of attributes can be developed where the attribute or concept under 

assessment (Mari, 1996:128) can be a complex attribute made up of basic attributes that 

can not be further sub-divided (Wang, 2003:1321). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Stages of Measurement 

Once the attributes are identified, observations or data collection, on the system 

attributes can take place.  Many terms are often used to describe the result of an 

observation such as measurement, indicator, or metric.  To clarify, a measurement is the 

raw symbol derived from the observation while an indicator, or index, is a measure for a 

complex attribute.  Further, the term metric has a precise mathematical definition: a 

distance between two entities where relations between them are non-negative, symmetric, 

and transitive (Apostol, 1974:60).  However, in measurement practice, a metric generally 
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represents a system of measurement composed of the system attributes, the units of 

measurement, and unit reference standards (Geisler, 2000:75). 

Clearly, attributes affect the validity of a measure.  Validity characterizes how 

well a measure reflects the system attributes it was supposed to represent.  Another 

characteristic of a measure is reliability.  Reliability, or precision, addresses the 

consistency or repeatability of the measurement process.  A final characteristic of a 

measure is amplitude, which is how well a measure represents abstract or higher order 

constructs and complex attributes (Geisler, 2000:40). 

Set X Set Y

A
B

C

D

E 1.2

3.7

3.12.5

6.2

5.4
8.9

measurement
)(XfY =  

Figure 2.  Measurement Scale 

Measurements can be made through the human senses or made through use of a 

measurement instrument, which is an apparatus or construct used for measurement 

(Geisler, 2000:36).  Instruments can be simple like a ‘tape measure’ or complex, such as 

a mathematical model.  Regardless of form, the instrument must be based on a scale 

having the same underlying relationships as the system attribute being measured 

(Mitchell, 2003: 304).  A scale (Figure 2) is a predefined mapping from one domain to 

another, representing empirical system relationships (Sarle, 1995).  Because of this, 

measurement is closely tied to definition (Caws, 1959:3) and the family of mappings for 

attributes of a system can be considered a mathematical model of the system, since the 

embedding of the empirical relationships (Scott, 1958:116) requires an understanding of 

the empirical domain in order to map it into the target, or formal domain.  Further, the 
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mappings can encompass uncertainty through use of fuzzy scales to represent the degree 

to which an attribute is considered present (Benoit, 2003). 

Referring back to Figure 1, scales can be a source of error since a measure will 

always contain any error inherent in the construction of the scale (Potter, 2000:11).  In 

addition to scale construction error, each observation itself is a random variable with an 

underlying distribution (Potter, 2000:3).  A key issue in system measurement, depicted in 

Figure 1, is the possible sources for error in the process from selection of system 

attributes to system assessment insights.  This error creates divergences between the 

perceived state of a system and the true state.  These divergences can yield misleading 

insights about the effectiveness of deliberate actions on a system and thus, must be 

addressed in any framework for effectiveness measurement. 

There are three primary sources of measurement error: random, systemic, and 

observational.  Random error is non-deterministic variation from any source impacting 

the system including the system itself.  Systemic error derives from construction of the 

measure or definition of the measurement process and comes in the form of measurement 

bias.  Finally, observational error is the oversight of key system attributes requiring 

measurement or using the wrong measures for identified system attributes. 

Error in measurement is well established within the physical sciences (Campbell, 

1957:437) and will be part of the measurement process even when the system is well-

defined (Krantz, 1971:27).  Error is an inescapable feature of measurement (Mitchell, 

2003:301; Finkelstein, 2003:45) and is a key focus of Metrology, the science of 

measurement.  Measurement error can be partially addressed with Statistical Theory; 

however, it should be noted, the field of mathematical statistics concerns making 
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inferences from data, while Measurement Theory, discussed below, addresses the link 

between the data and the real-world.  From this point of view, one needs both to make 

inferences about empirical systems (Sarle, 1995:64). 

In many contexts, there is a ‘Catch-22’ with regard to system measurement.  In 

order to properly measure a system, one needs to know something about it; however, the 

very reason one may want to measure a system is to gain an understanding of it (Geisler, 

2000:35).  Often for complex objects, processes, and phenomenon with intricate networks 

of connections, the attributes that best define a system may be unknown, inaccessible, or 

only visible as an outcome.  Measurement of these systems requires use of a proxy or 

indirect measuring method (Potter, 2000:3) where a proxy measure is essentially a model 

or approximation of the system attribute of interest.  Quantification is the process of 

developing these indirect measures (Mitchell, 2003:302) or in other words, the process of 

converting empirical relationships into logical operations.  Although there is no universal 

approach for deriving these proxies, the process typically involves reducing complex 

aspects of a system into understandable, measurable components. 

By one definition, measurement is the assignment of numerals to a system 

according to a rule (Stevens, 1959:25).  However, not all assignment techniques are 

useful and some techniques have constraints on how the results can be assessed.  

Although there is not a standard of measurement for complex objects, processes, and 

phenomenon (Bulmer, 2001), a set of axioms for approaching measurement of these 

systems can help avoid deriving erroneous insights.  Such a set of axioms is embodied in 

Measurement Theory. 
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MEASUREMENT THEORY 

To measure is to know. 
     – LORD KELVIN, 1824 – 1907 
 

Formalisms regarding measurement are evident in Ancient Greek culture dating 

back to the 4th century B.C., but the initial foundations for an axiomatic approach to 

measurement did not emerge until the late 1800s (Finkelstein, 1984:25).  Much of this 

early work concerned the physical sciences, however.  It was not until the mid-1900s, as 

efforts to measure abstract concepts such as utility and aspects associated with 

psychology appeared, that a more robust set of principles regarding measurement evolved 

(Narens, 1986:169).  Interestingly, methods of measurement in classical, or Newtonian, 

physics have evolved without theoretical foundation while the ‘softer’ sciences required a 

more robust framework because of the abstract nature of the systems of interest 

(Finkelstein, 1984:29).  This robust framework is contained in Measurement Theory. 

Measurement Theory is 

a branch of applied mathematics that attempts to describe, categorize, and 
evaluate the quality of measurements, improve the usefulness, accuracy, 
and meaningfulness of measurements, and propose methods for 
developing new and better measurement instruments.  (Allen, 1979:2) 
 

Although there are several viewpoints regarding measurement (Cyranski, 1979:283; 

Schwager, 1991:618; Niederée, 1992: 237), the most widely accepted form is 

‘representational’ (Finkelstein, 1984:26).  The representational view is built upon three 

theorems: Representation, Uniqueness, and Meaningfulness (Luce, 1984:39).  For a 

system to be measurable, it must be possible to map a formal domain to an empirical 

domain.  The collection of axioms supporting such a representation is called a theory and 

generally consists of the necessary and sufficient conditions for measurement within a 
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particular domain (Schwager, 1991:619).  The purpose of a theory of measurement for a 

particular domain is to provide structure for a set of empirical observations describing the 

relations within a system (Finkelstein, 2003:41).  This structure can then be used to 

measure the system of interest for purposes of assessment (Scott, 1958:113).  The 

representational view asserts the symbols assigned to the system represent perceived 

relations between its attributes (Suppes, 1963:4).  Thus, the representational view is 

based on relational systems. 

A relational system is a set of elements where relationships exist among the 

elements (Pfanzagl, 1971:18).  A relational system can be mathematically stated as: 

 X = 〈 xi, R 〉 ( 2 ) 

where xi represents elements in X and R symbolizes the set of relations between those 

elements.  Real-world relational systems are referred to as empirical relational systems.  

As an example of another type of relational system, let Y = 〈 yi, A 〉 where yi ∈ R, R is the 

set of real numbers, and A represents the algebraic operations on R.  Y is known as a 

numerical relational system (Finkelstein, 1984:26).  Measurement, m, then can be 

formally defined as: 

 m: X → Y ( 3 ) 

where m is the one-to-one mapping of elements in X to elements in Y in a manner such 

that R ⇔ A (Roberts, 1979:52). 

This is a fundamental aspect of Measurement Theory and is known as the 

Representation Theorem and amounts to justifying the assignment of symbols in Y.  It is 

accomplished by proving portions of X and Y have the same structure (Suppes, 1963:4) 
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or that relations in the formal domain preserve the relations in the empirical domain 

(Finkelstein, 2003:43).  This theorem implies m is a structure preserving mapping 

between domains (i.e. homomorphism) (Apostol, 1974:84). 

Another component of Measurement Theory is uniqueness.  Uniqueness concerns 

the mathematical characterization of the family of allowable transformations.  The 

Uniqueness Theorem requires any transformations of the mappings m ∈ M from X → Y 

to maintain the representation conditions (Suppes, 1963:19).  In other words, only 

admissible transformations are allowed (Finkelstein, 2003:43).  A great source of 

difficulty in developing a theory of measurement is not only discovering relations which 

have an exact and reasonable numerical interpretation, as well as a practical empirical 

interpretation, but proving under which conditions the relations hold (Scott, 1958:113).  

However, if these conditions do hold, a scale of measurement S can be defined as: 

 S = 〈 X, Y, M 〉 ( 4 ) 

Table 1.  Scale Types (Narens, 1986:168) 

 
 

Scale Admissible Transformations Examples 
Absolute x → x “John is twice as tall as Bill” 
Discrete 

Ratio x → kn, constant k > 0, n ∈ Z length in lines of code 

Ratio x → rx, r ∈ R+ age, speed, Kelvin temperature 
Discrete 
Interval 

x → knx + s, constant k > 0, 
n ∈ Z, s ∈ R 

murder rate (based on population 
proportion) 

Log Discrete 
Interval 

x → sxkn
, constant k > 0, 

n ∈ Z, s ∈ R 
murder rate per 100,000 
police force per 100,000 

Interval x → rx + s, r ∈ R+, s ∈ R temperature (Fahrenheit or 
Celsius), calendar dates 

Log Interval x → sxr, r, s ∈ R+ density (mass/volume), fuel 
efficiency in mpg 

Ordinal x → f(x), f monotonic beauty, hardness 

Nominal x → f(x), f ∈ 1-to-1 functions names, numbering on athletic 
uniforms 
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Figure 3.  Scale Hierarchy of Commonly Used Measures (Ford, 1993:9) 

Despite the generalized notation, only a few scale types exist (Stevens, 1946:677).  

These are listed in Table 1.  These types are sometimes referred to as levels of 

measurement since each distinguishes the number and types of information contained 

within the relations of the formal domain.  The most common scale types are the 

Nominal, Ordinal, Interval, Ratio, and Absolute scales (Sarle, 1995:63).  A nominal scale 

only contains equivalence meaning.  The ordinal type has both equivalence and rank 

order meaning.  Interval measures have these two meanings as well but also have 

meaning in the intervals between the values.  Ratio measurement further adds meaning in 

the ratios of values.  Finally, absolute scales measure ratios with no units attached, but are 

also often interpreted as measurement by counting.  These scale types are hierarchically 

related, with the absolute scale type being at the top as shown in Figure 3.  Thus, a higher 

level scale type can always be converted to a lower level scale but not vice versa (Ford, 

1993:9).  As noted, scale type provides an indication of how much information the 

assigned symbol contains about the system attribute (Torgerson, 1958:21) but also 

provides guidance on the transformations allowed to maintain the information (Luce, 

1984:39). 
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A final tenet of Measurement Theory concerns meaningfulness.  A measure is 

meaningful, if and only if, the resultant is invariant for admissible transformations 

meeting the uniqueness condition (Suppes, 1963:66).  Meaningfulness is specific to scale 

type and can yield misleading or erroneous results when truth or falsity depends on the 

scale type used (Burke, 2003; Roberts, 1984). 

As can be seen, the Representation, Uniqueness, and Meaningfulness Theorems 

have a hierarchical relationship.  The construct starts with proof of the formal 

representation of the system.  Then, uniqueness addresses the class of transformations 

that maintain the representation.  Stated differently, a representation theorem shows how 

to embed a qualitative structure homomorphically into some family of numerical 

structures and the corresponding uniqueness theorem describes the different ways that the 

embedding is possible.  Finally, meaningfulness deals with the invariance of a specific 

symbolic (numerical) statement across admissible transformations. 

Many attributes can be measured directly.  These are termed extensive attributes, 

or fundamental measures (Narens, 1985:78).  Other measurements may be based on 

assumed relations or by arbitrary definition (Torgerson, 1958:22).  However, as already 

noted, not all attributes are easily measured.  For these intensive attributes (Suppes, 

1963:15), indirect measures may not be empirically significant.  These proxies are also 

referred to as weakly defined measures.  Systems with such attributes are characterized 

by ill-defined representation, uncertainty about relational aspects within the system, and 

have little theory supporting the underlying nature of the system.  For attributes of these 

systems, measurement often precedes definition working in an exploratory, recursive 
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process where measurement leads to definition and definition leads to refined measures 

(Finkelstein, 2003:45). 

One approach to addressing measurement of these ill-defined systems is through 

conjoint measurement (Luce, 1964:1).  Conjoint measurement, or multidimensional 

scaling (Torgerson, 1958:248), assumes additive or multiplicative decomposability of 

qualitative structures and combines several indirect or derived measures to increase 

empirical significance (Narens, 1985:182), where a derived measure is a measure based 

on other measures (Pfanzagl, 1971:31).  Decomposability implies multi-attribute 

mapping functions, with corresponding scales which preserve empirical ordering, exist 

(Krantz, 1971:317).  Conjoint measurement is common in developing utility functions 

and development follows a similar procedure (Keeney, 1993:91).  Further, the 

mathematics for working with these constructs is well established (Narens, 1976:197).  

Although conjoint measurement was initially developed to address weakly ordered 

attributes, the framework results in a structure for the simultaneous measurement of all 

attributes (Finkelstein, 1984:28).  It should be noted, these structures are sometimes 

referred to as product structures, where dependent system variables are explained by a 

number of system stimuli (Roberts, 1979:198). 

As already suggested, all measurement is carried out within a context.  This 

implies some purpose for conducting measurement.  This purpose can be for system 

description, monitoring, and/or forecasting.  With the theoretical foundations for 

measurement laid out, the next section examines the application of measurement. 
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APPLICATION OF MEASUREMENT 

Count what is countable, measure what is measurable, 
and what is not measurable, make measurable...  

       – GALILEO, 1564 – 1642 
 

As noted, measurement is a routine, everyday process and a necessity in most 

fields of endeavor (Rumsey, 1990:19).  Measurement is fundamental to understanding, 

controlling, and forecasting (Wilbur, 1995:1; Antony, 1998:7).  Whether conducted 

explicitly or implicitly, measurement is the mechanism for extracting information from 

empirical observation.  However, obtaining this insight is dependent on having feasible 

implementation methods, as well as reliable models, for approaching the task of 

measurement (Sink, 1991:25). 

Measurement is applied to a system within a specific context (Morse, 2003:2).  

The measurement context defines the need for conducting system measurement.  This can 

be for exploratory purposes such as characterizing a new system, but commonly involves 

resource commitment decisions.  Regardless of context, a key aspect for measurement of 

a system is its environment.  Within its environment, a system has some purpose or 

normative behavior.  The behavior of most real world systems is the result of a complex 

set of interactions and real world systems typically have a complex, abstract purpose.  

Measurement translates this complex behavior or abstract purpose into a set of ‘vital 

signs’ indicating variations in system behavior or gauging fulfillment of system purpose 

(Kaplan, 1996:75; Melnyk, 2004:209; Ittner, 1998:205) and, most importantly, measures 

indicate when a system has fulfilled its purpose or is acting in accordance with its 

normative behavior (Sproles, 1997:16).  Further, depending on the measures used, 

measurement can yield information on when and why a system is deviating from its 
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normal or desired behavior (Kaplan, 1996:84).  In order to achieve maximum benefit, 

however, measurement must be an explicit and objective activity.  This is accomplished 

through measurement planning (Antony, 1998:14).  If proper planning is not conducted, 

measurement can become unreliable, untimely, and be more of a burden than a benefit 

(Antony, 1998:17; USAF, 2003:40). 

Measurement activities are often executed as an afterthought and evolve without 

oversight (Melnyk, 2004:210) leading to ineffectual measures and wasted resources 

(Hamner, 1993:1-4).  One way to prevent this is by developing a measurement plan 

(Sink, 1985:77).  A measurement plan addresses the information to be derived from the 

measurement activity (Park, 1996:1) and how the system will be measured to include 

how measures will be determined and how measurements will be collected, as well as the 

allocation of resources for measurement activities to include training and tools (Eccles, 

1991:133).  The plan contains all information required to conduct system measurement 

within a specific context (Neely, 1997:1138) and is sometimes referred to as the 

measurement protocol (Kitchenham, 1995:937).  Additionally, the measurement plan 

may be integrated with other plans concerning the system such as a strategic plan.  

Further, the measurement plan should be a ‘living document’ implying it not only serves 

to guide the measurement process, but should be used to document, or be an ‘audit trail’, 

for how the system measurement process was executed (Sproles, 1996:37). 

Before measurement planning can begin, however, a framework for 

conceptualizing measures is needed.  Measure frameworks ensure measurements are 

traceable back to the original purpose for taking the measurements in the first place.   
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Figure 4.  System of Measures 
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Inputs – any controllable or uncontrollable factor that enters the system 
Outputs – system transformation of the inputs 
Effect – changes resulting from the outputs 
Outcome – the conditions created by system effects 
Purpose/Impact – reason for system existence or expected system behavior 

 
Measure of Outcome (MOO) – gauges conditions created by system effects Strategic – directly concerns the system purpose or normative impact 
Measure of Effectiveness (MOE) – measure changes resulting from outputs Operational – intermediate events required to achieve the system purpose 
Measure of Performance (MOP) – measure of system transformation of inputs Tactical – short-term activities necessary to attain operational level outcomes 
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Differentiating between the different frameworks is crucial for effectiveness 

measurement.  These frameworks are commonly classified as either vertical or 

horizontal.  The vertical, or hierarchical, structure is associated with measures that can be 

directly linked to the system purpose or normative behavior.  The horizontal structure, or 

process framework (De Toni, 2001:50), on the other hand, is normally aligned with 

system processes, where a process is a set of actions or functions yielding some result 

(Artley, 2001a:15).  Additionally, the vertical structure is often linked with fundamental 

system objectives, where a fundamental objective is the overall desired or expected 

system end-state.  Alternatively, the horizontal structure is usually linked with means 

objectives, where a means objective is an enabler for a fundamental objective (Keeney, 

1992:66).  Typically, measures in the vertical construct are associated with system 

effectiveness and measures in the horizontal construct concern system efficiency.  

However, these structures are not exclusive of each other.  They can exist at the same 

time for a system and further, a single measure can exist simultaneously in both 

constructs (Keeney, 1992:89). 

Measures of effectiveness and measures of efficiency provide different insights 

about a system.  A measure of effectiveness (MOE) concerns how well a system tracks 

against its purpose or normative behavior (Sproles, 1997:17).  However, a measure of 

efficiency, which is also known as a measure of performance (MOP), describes how well 

a system utilizes resources (Sink, 1985:42).  In other words, a MOE determines if the 

right things are being done and a MOP determines if things are being done right (Sproles, 

1997:31).  This subtlety is crucial since these measures are developed from differing 

viewpoints.  A MOE can be considered invariant to means of achievement (Lebas, 
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2002:73; Sproles, 2000:54) while a MOP characterizes system capability or the attributes 

of a system under a specified set of conditions and is thus, system dependent (Sproles, 

1997:16; Sproles, 2000:57).  The key distinction, however, is a MOP alone does not 

provide indication of progress towards a system’s purpose or indication of normative 

behavior.  Beyond measures of effectiveness, measures of outcome (MOO) gauge 

indirect conditions created by system effects (DSMC, 1994), as depicted in Figure 4. 

For example, suppose a transshipment warehouse desires a low wait time for 

items awaiting transit.  If we let the desired effect be measured by amount of wait time, 

one choice for a MOE is average item wait time.  As alternatives for transit, trucks, trains, 

and planes can be used.  Regardless of which alternative is used, the MOE will not 

change.  However, each mode of transit will have a different performance measure or 

MOP (e.g.  truck loads, box cars, and plane loads).  Additionally, in this hypothetical 

scenario, because of lower wait times, items are getting to customers faster, resulting in 

repeat business, as well as new business, having the outcome (MOO) of increased 

profitability. 

Transformations

System

Input Output
Transformations

System

Input Output

 
Figure 5.  Input-Output Model (Sink, 1985:3) 

Another useful construct for conceptualizing a system is an input-output model 

(Figure 5).  Inputs can be any controllable or uncontrollable factor.  These inputs enter 

the system and are ‘transformed’ into outputs.  The outputs result in various effects 

contributing to conditions in the system’s environment which leads to attainment of the 
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system’s purpose or normative behavior.  The input-output concept is invariant regardless 

of perspective, with the only change being the type and size of the system and its 

associated transformations.  The key task in development of the model is operationalizing 

the relationship between the input and output (Sink, 1985:4) where ‘operationalize’ is the 

act of quantification or defining an attribute by the way it is measured.  The input-output 

model provides a means for system feedback or quantifying the impact of an input, which 

is fundamental to understanding and control of any system (Kaydos, 1999:1; Neely, 

1997:1132). 

A critical element of the input-output construct is defining system boundaries.  

The boundaries of a system are where elements of the system interact with elements 

outside the system.  Everything outside this boundary is considered the system’s 

environment.  The system environment can be described as those factors external to the 

system that will influence the system over the period of measurement (Artley, 2001a:9).  

Identifying the boundaries is crucial since they influence the scope of measurement 

(Sink, 1985:27).  Further, making accurate inferences from measurements requires an 

understanding of the circumstances surrounding the system when the measurements were 

taken (Wilbur, 1995:17).  This contextual information provides insight into why a system 

behaved the way it did; identifying pressures working with and against the system. 

 

 
 
 
 
 
 
 

Figure 6.  System of Systems 
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A conceptually helpful extension of this construct is visualizing a network of 

linked input-output systems, where outputs of one system are the inputs of others (Figure 

6).  In fact, every system can be seen as part of another larger system (Ackoff, 1971:663).  

Thus, the combining of systems yields a larger system with its own inputs, outputs, 

effects, outcomes, purpose/behavior, and boundaries.  However, within this larger 

system, each sub-system still has its own input, output, effect, outcome, 

purpose/behavior, and boundary (Sproles, 1996:34). 

This system-of-systems view allows for conceptualizing the overall system at 

different levels to include strategic, operational, and tactical (Figure 4).  The strategic 

level directly concerns the system purpose or normative behavior.  The operational level 

focuses on intermediate events required to achieve the system purpose or normative 

behavior.  Finally, the tactical level addresses short-term activities necessary to attain 

operational level outcomes (Artley, 2001b:12).  An interesting analogy for this system-

of-systems construct that could also be used to identify significant sub-system inter-

linkages is a neural network.  Neural networks are made up of perceptrons, which are 

simple input-output systems.  Collections of these perceptrons, as a neural network, can 

be used to model and explain highly non-linear systems (Mitchell, 1997:81).  However, 

even with simple linear systems, there are numerous challenges confounding the 

measurement process. 

The key to successful measurement is ensuring the right measures are being used 

to gauge the system purpose or normative behavior (Brown, 1996:3; Leonard, 2004:2).  

The goal is to understand which inputs or environmental conditions lead to which 

outcomes (Morse, 2003:38).  The key challenge, however, is what we would like to 
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measure and what we can measure are usually not the same thing (Meyer, 2002:17).  

Additionally, most endeavors are very situation dependent, ruling out ‘one size fits all’ 

sets of measures (Antony, 1998:9; Balkcom, 1997:28; Roche, 1991:191).  It is generally 

accepted, however, the vertical framework should be used for effectiveness measures 

where all measures are derivative of the system strategic purpose or normative behavior 

(Brown, 1996:162).  Thus, even operational and tactical level measures should flow from 

the strategic level (Campi, 1993:8-4.3). 

The crux of the problem in understanding which inputs lead to which outcomes is 

identifying and articulating the cause-effect linkages between the strategic, operational, 

and tactical levels as well as the impact of inputs and environmental factors on each of 

these levels (Kaplan, 1996:76; Sink, 1985:86).  The difficulty in establishing these 

linkages is usually understated (Hamner, 1993:2-7).  The cause-effect relationship can be 

difficult to discern because the output of one system may be the input of another system 

and some of the systems may be hidden or inaccessible (Leonard, 2004:35).  

Additionally, there may be a dynamic delay between a system input and when the impact 

of that input is seen.  Further, for systems in dynamic environments, the cause-effect 

relationships can change over time (Kaplan, 1996:84) or the system may even adapt to 

being measured (Neely, 1997:1132; Meyer, 2002:79). 

Basic approaches, such as cause-effect mapping, can assist in identifying and 

explaining some of the linkages.  However, the use of historical measurements and 

statistical techniques are normally required to understand more complex systems 

(Kaydos, 1999:115; Evans, 2004:219).  If these linkages can be identified and 

understood, a model representing the logical framework of interdependencies between 
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elements within a system and between the system and its environment can be developed.  

A model based on this representation can then be used for purposes of system forecasting 

(Feuchter, 2000:12; Kircher, 1959:66). 

Despite the challenges of uncovering system relationships, applied measurement 

concerns the outward behavior of systems versus their internal dynamics.  Thus, an 

effectiveness measurement framework should consists of system measures explaining 

this behavior.  The primary goal in developing system measures is to create a set of 

measures yielding the most insight while imposing the least amount of burden (Antony, 

1998:8). 

Approaches to developing measures vary; however, there appears to be wide 

agreement the starting point is defining the system’s strategic purpose or normative 

behavior as well as associated fulfillment criteria (Sink, 1985:86; Hamner, 1993:2-9; 

Brown, 1996:11; Antony, 1998:9).  These strategic level definitions can be abstract and 

difficult to quantify for real world systems.  Thus, subsequent steps involve reducing the 

strategic level concepts into conditions or outcomes supporting the system purpose or 

normative behavior (Hamner, 1993:2-9).  An extension of this step sometimes employed 

is determining the relative importance, or weighting, of multiple, and possibly 

conflicting, conditions or outcomes (Hamner, 1993:2-12).  These can then be further 

reduced to effects that would bring about the outcomes or conditions (Brown, 1996:11).  

Next, system outputs that would achieve the effects can be identified.  Finally, inputs 

required to create the outputs are defined (Sink, 1985:86) as shown in Figure 4.  The 

basic concept is to work backward through the cause-effect relationships, iteratively 

decomposing abstract concepts to a point where they are so narrowly defined a measure 
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suggests itself (Sink, 1985:86).  Hopefully, this approach yields a direct, natural measure, 

or a measure with a universal interpretation that directly measures system purpose or 

normative behavior.  If it does not, a constructed measure must be used. 

A constructed measure is defined for a specific context and has two forms.  The 

first is a subjective or categorically defined scale.  The second form is an aggregation of 

several natural measures to form an index.  However, if no natural measures are readily 

apparent and a constructed measure can not be derived, a proxy or indirect measure 

reflecting attainment of an objective associated with the strategic objective can be used 

(Keeney, 1992:101). 

Table 2.  Measure Types (Kirkwood, 1997:24) 

 

The relationships between these measure types are summarized in Table 2.  

Regardless of the type of measure, the above reductionist process assumes linear 

decomposition, implying the sum of the constituent parts is representative of the overall 

system behavior, however, it does not propose how quantification of a complex system 

can be made tractable (Beckerman, 2000:97).  The reductionist philosophy is based on 

the premise that elements of one kind are combinations of elements of a simpler kind 

(Sproles, 1996:34) and is central to developing an effectiveness measurement framework. 

 Natural Constructed 

Direct 
- Commonly understood measures directly 

linked to strategic objective 
- Example: Profit 

- Measures directly linked to the strategic 
objective but developed for a specific 
purpose 

- Example: Gymnastics scoring 

Proxy 
- In general use measures focused on an 

objective correlated with the strategic 
objective 

- Example: GNP (economic well being) 

- Measures developed for a specific 
purpose focused on an objective 
correlated to the strategic objective 

- Example: Student grades (intelligence) 
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However, this decomposition process may not be applicable to all systems.  Some 

systems may be better suited to a Systems Thinking, or holistic approach, where the focus 

is on the interactions between the elements in a system versus the elements themselves, 

implying the sum of the parts is greater than the whole (Beckerman, 2000:98).  Instead of 

breaking the system into smaller and smaller parts, as in reductionism, the Systems 

Thinking approach takes an expansionist view by incorporating more and more of the 

system element interactions.  In other words, Systems Thinking moves a system 

boundary incrementally further out to incorporate more interactions.  However, this can 

result in more complex system models.  One methodology to leverage the strengths of 

both of these views is to start with the reductionist approach and then build back up with 

the Systems Thinking approach (Beckerman, 2000:99). 

Regardless of the modeling approach, large, complex systems can result in 

numerous measures, each providing only a narrow view of the system.  Having numerous 

narrow views can make it difficult to assess the overall system status.  Although the 

lower level measurements provide the most unambiguous insight about system attributes 

(Jordan, 2001:17), to get strategic, system level insights, measurements must be 

combined to summarize this lower level data (Antony, 1998:13; Brown, 1996:4).  The 

problem, however, is the measurements are usually not in the same units.  Aggregation 

involves normalization, standardization, or other means to make these dissimilar 

measurements commensurable so they can be mathematically combined.  Combining 

dissimilar measurements to get an overall system measurement, however, requires an 

understanding of the scale types being used in order to ensure the aggregated 
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measurement is meaningful and preserves the original scale level information (Antony, 

1998:13). 

The normalization process only yields dimensionless measures.  Thus, a means of 

aggregation is needed.  There are a number of ways to achieve this.  The most obvious is: 

 M = ∑ wimi ( 5 ) 

where aggregated measure M is derived by summation of i measures (m) each multiplied 

by a predetermined weighting (w) or influence on the aggregated measure.  If the 

relationship between the measures is known to be non-linear, a multiplicative aggregated 

measure can be used: 

 M = ∏ wimi ( 6 ) 

Finally, for well understood systems, a high order polynomial may yield an aggregated 

measure more closely capturing the system’s underlying nature (Pinker, 1995:10): 

M=∑wimi+∑wimi
2+…+∑wimi

n+∑wijmimj+∑wijkmimjmk+…+∑wij…nmimj…mn ( 7 ) 

Despite unique measures being required for most systems, and even for the same 

system in different environments, good measures share some common characteristics.  

These properties can be categorized as strategically-linked, timely, objective, economical, 

complete, and measurable. 

• Strategically-linked – Effectiveness measures should be traceable to the 

system strategic purpose or behavior (Kaplan, 1991:73).  Additionally, 

strategically-linked implies the measure is responsive to change and provides 

an indication of how much change can be attributed to a system input (Neely, 
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1997:1137).  However, other measures, such as process measures, are 

important for determining why a system is behaving the way it is (Brown, 

1996:44; Meyer, 1994:97). 

• Timely – Measures should be collected and processed in a timeframe that is 

needed to be relevant within the context (Kaplan, 1991:73; Harbour, 1997:8).  

This property is at the heart of the trade-off between timeliness and 

measurement accuracy. 

• Objective – This category has two dimensions. 1) Collection: Measures 

should be easy to understand, be the same regardless of the assessor 

(accuracy), and be the same under similar circumstances (repeatability) 

(Finkelstein, 2003:41).  Objectivity also implies credibility which concerns 

measure ‘face-value’ or whether the measure logically represents what it is 

supposed to represent.  It should be noted, an objective measure can be 

qualitative but subjective measures should be avoided (Kaydos, 1999:19) 

since these types of measures are difficult to verify.  Subjective measures are 

commonly associated with questionnaires and interviews (Wilbur, 1995:20).  

2) Interpretation: Measures, once obtained, should have an unambiguous 

interpretation (Antony, 1998:9) and more importantly, distinguish between 

desired and undesired consequences (Meyer, 2002:79). 

• Economical – Collection and processing of measurement data should provide 

benefits that off-set the burden of measurement activities (Kaplan, 1991:73).  

Part of an economical measurement system is ensuring the measures are 

unique and do not contain redundant information (Artley, 2001b:39). 
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• Complete – Measures should address all areas of concern in enough detail to 

discern reasons for differences in actual and expected system results (Kaydos, 

1999:48).  Completeness does not require identifying every relevant system 

attribute, however; a spanning set of measures associated with the system’s 

purpose or behavior should be attained.  Additionally, measures should be 

limited to those vital for assessing system strategic purpose/behavior and 

reasons for deviations (Hamner, 1993:2-6; Harbour, 1997:9).  Too many 

measures can result in ‘measurement disintegration’ (Balkcom, 1997:29) as 

well as become an economic burden.  Completeness can be characterized by 

breadth and depth where breadth addresses how many of the system attributes 

are being measured and depth refers to the unit of analysis or ‘granularity’.  

Completeness is also closely related to the concept of balanced measures 

(Kaplan, 1991).  Unfortunately, there is no comprehensive method for 

developing a complete set of measures.  However, achieving completeness 

typically requires both critical and creative thinking in an iterative process 

involving negotiation and compromise among those interested in and 

knowledgeable about the system (Sproles, 2002:258). 

• Measurable – Measures should hold for the representation, uniqueness, and 

meaningfulness conditions.  Additionally, measurable implies within a given 

context if the measure can be feasibly obtained with available resources.  This 

is commonly referred to as being operational (Keeney, 1992:82).  Further, 

measurable implies the collected measures are accurate and can be verified 
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(Artley, 2001b:39).  This is crucial since any system insights gleaned are only 

as good as the measurements taken (Jordan, 2001:15). 

Beyond these specific properties, measures can be categorized based on the type 

of system they represent.  These types include task, process, and object measures.  For 

example, task measures compare a plan versus actual performance.  Process measures, on 

the other hand, are typically used to monitor productivity against a predefined standard, 

benchmark, or goal.  Finally, object measures address specific attributes of a system such 

as physical properties or functions.  Additionally, measures can be grouped by 

dimension.  Single dimensional measures represent fundamental attributes of a system.  It 

follows, multidimensional measures are simply mathematical (linear or multiplicative) 

combinations of single dimensional measures (Artley, 2001b:3). 

The purpose of measurement is to provide meaningful information in support of 

the context (Antony, 1998:18; Jordan, 2001:3).  Measurement alone, however, will not 

provide this information (Leonard, 2004:14).  Measurement, although a crucial element, 

is only a part of the process of system assessment (Wilbur, 1995:16).  Assessment is a 

systematic process of monitoring a system (Blanchard, 1991:14).  Assessment converts 

raw measurement data into information and knowledge yielding insight (Artley, 

2001a:41).  Assessment can be categorized either as enumerative or analytical (Evans, 

2004:219).  Enumerative studies or evaluations are descriptive in nature, describe why a 

system behaved the way it did, and commonly only provide hindsight (Evans, 2004:222). 

Analytical studies, on the other hand, can provide foresight and attempt to 

understand how a system will behave in the future under certain conditions (Meyer, 

2002:49).  Analysis is primarily based on historical measurements which can be 



 

 32

problematic since past data may not necessarily be a predictor of future system behavior 

(Meyer, 1997:33).  Thus, analysis insights based on historical measurements assume 

system relations are stable (Lebas, 1995:26).  Further, to objectively state an input had a 

significant system impact requires use of statistical techniques (Evans, 2004:219) 

yielding a confidence statement. 

Assessment, as well as identification of system causal linkages, can be further 

aided through use of tools from the field of Artificial Intelligence such as Support Vector 

Machines, Neural Networks, and Decision Tree Learning (Mitchell, 1997; Cristianini, 

2000).  With any statistical technique, however, there is the possibility of making an 

incorrect inference.  These mistakes are termed Type I and Type II errors.  A Type I 

error, or false-negative, is where a hypothesis is rejected when it is true and a Type II 

error, or false-positive, occurs when a hypothesis is not rejected when it is false. 

Finally, an important, but often underemphasized aspect of system measurement 

is communication, or the design of information (Tufte, 1997:9).  As noted, measurement 

is carried out within a context.  This context could be exploratory or for a resource 

commitment decision.  Modern word-processing, spreadsheet, and database software 

provide flexible means to generate information displays to support the context.  Further, 

some analytical software packages may come with ‘canned’ output reports.  However, 

depending on the context, some methods are better for communicating information than 

others (Tufte, 1997:27).  Additionally, the target audience and intended use of the 

information must be taken into consideration (Jordan, 2001:41).  Effective 

communication of insights via words, numbers, and pictures generally requires creativity.  

Although there are no universal rules for every situation, the goal for an information 
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display should be to present the maximum amount of information possible while ensuring 

unambiguous understanding of the insights and their implications for the target audience 

(Tufte, 1983:105; Jordan, 2001:43).  The key point is regardless of how impeccable the 

measurement plan and implementation, and regardless of how rigorous the assessment, if 

the insights cannot be effectively communicated, then the measurement context was not 

effectively supported (Tufte, 1997:9). 

The previous three sections provided a general survey of measurement concepts 

without an application focus.  The following sections concentrate on measurement for 

military campaign assessment and specifically measurement in support of Effects-based 

Operations (EBO), which will establish specific concepts required for an effectiveness 

measurement framework. 

EFFECTS-BASED OPERATIONS 

We must make the important measurable, not the measurable important. 
      – ROBERT MCNAMARA, 1916 –  
 

Although commonly thought of as an operating concept, Effects-based Operations 

(EBO) is a theory for the employment of capabilities in dynamic and uncertain 

environments in a manner to best attain objectives (Williams, 2002:1).  EBO provides a 

conceptual framework for determining the integration and application of capabilities to 

achieve specific effects, and if correctly applied, influencing an environment of interest 

yielding desired outcomes (Timmerman, 2003:1).  Key tenets of this theory, in the 

military realm, are a focus on end outcomes, reduced emphasis on weapon systems, and 

de-emphasis on destruction as a sole means of achieving effects (Henningsen, 2003:2).  

Another misconception of the theory is EBO requires advanced technology and perfect 

information (Williams, 2002:11).  In fact, concepts concerning EBO are evident in the 
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writings of Sun Tzu and Clausewitz (Ho, 2003:ii).  The relatively recent resurgence of 

effects-based concepts was not so much a re-discovery, but an effort to institutionalize 

these ideas.  This charge was championed by Major General David A. Deptula (Lowe, 

2004:2).  He suggested air attack with precision weapons as the best means for 

implementing Effects-based Operations (Deptula, 2001b:25).  His emphasis on air power, 

however, alienated many of those outside the Air Force (Williams, 2002:22).  That said, 

EBO is not solely an Air Force approach.  Further, Effects-based Operations is not just a 

military approach.  The concepts of EBO have close parallels to techniques from the 

discipline of Decision Analysis for deriving better decisions to achieve objectives. 

EBO is supported by three pillars: Planning, Employment, and Assessment 

(USJFC, 2003a:B-3).  The major paradigm shift for EBO compared to traditional military 

approaches is in the planning phase, with the focus on the end-state and the effort to 

establish the ‘objective-to-effects-to-node-to-action’ linkages.  Like other approaches, 

EBO is reliant on the efficient employment of capabilities; however, with EBO there is 

an increased emphasis on non-lethal means.  Finally, EBO assessment requires 

determining if the intended effects were achieved and if they are shaping the desired 

outcomes. 

Military EBO planning starts with the desired outcome being articulated by 

senior, civilian decision makers supported by input from military leaders.  Next, the Joint 

Force Commander develops supporting in-theater objectives and the outcomes 

characterizing the end-state, as well as the effects needed to shape those outcomes 

(Williams, 2002:4).  At this point, Measures of Outcome and Measures of Effectiveness, 

along with their associated success criteria, are established (USAF, 2003:7).  After 
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appropriate effects and measures have been selected, courses of action (COAs) can be 

developed and analyzed, where a COA, or strategy, delineates the who, what, where, 

why, when, and how (to include with what resources) (McCrabb, 2002:135).  The 

measures are key to the approach since they tie the three pillars together and are used to 

determine if the intended effects are being achieved and if the strategy and course of 

action needs adjustment (Smith, 2002:355).  Since the planning process starts with the 

end goal and does not apply weapon system or target solutions during COA development, 

inherent to EBO is the application of operational art, allowing the strategist to be flexible 

and innovative. 

Key to the EBO approach is understanding the decision context.  This is achieved 

through the ‘operational net assessment’.  The decision context includes all factors of the 

strategic, operational, and tactical environment, especially those outside the military 

realm such as culture, religion, and economics (Meilinger, 1999:55).  Another important 

part of this decision context is understanding who all the participants are, their objectives, 

and the value each attaches to their objective.  The operational net assessment emphasizes 

the fact that information is a critical enabler for EBO. 

The enduring theme of EBO is always keeping the end-state in sight.  This type of 

approach is certainly not unique to military operations.  Numerous endeavors require a 

strategic view (Da Rocha, 2005:31).  One methodology from the field of Decision 

Analysis, Value Focused Thinking, epitomizes this concept: 

You begin with the fundamental objectives that indicate what you really 
care about in the problem.  Then you follow simple logical reasoning 
processes to identify the mechanisms by which the fundamental objectives 
can be achieved.  Finally, for each mechanism, you create alternatives or 
classes or alternatives by asking what control you have over that 
mechanism.  (Keeney, 1992:14) 



 

 36

 
The above quote suggests EBO is based on a robust and formal framework for 

strategic thinking, yielding strategies for creating effects to influence behavior (Smith, 

2002:108) and an optimum way to approach a wide array of situations (Mann, 2002:43).  

The crux of the challenge in successfully implementing EBO, however, is understanding 

the nature of effects. 

EFFECTS 

There is measure in all things. 
      – HORACE, 65 – 8 B.C. 
 

History has shown warfare is often focused on destruction of the enemy’s military 

forces (McCrabb, 2001:3).  History, however, has also shown efficient prosecution of war 

focuses on strategic ends which are typically not the enemy’s military forces (USAF, 

2003:7).  The end focus is usually some desired end-state where attacks on an enemy's 

military forces are a means to achieve the end-state, but not necessarily the only means; 

use of military force is only one instrument of power.  Other means of influence include 

diplomatic, economic, and informational actions for example.  Regardless of the means, 

efficient prosecution of war must be focused on using only actions, and their supporting 

actions, necessary to shape the end-state, which is accomplished through creation of 

effects. 

A metaphor often used for discussing concepts related to war, which is also useful 

in discussing effects, is comparing an enemy to a system (Warden, 1995), where a system 

is a set of related elements that collectively has some purpose or impact (Bouthonnier, 

1984:48).  The interconnected elements of the enemy typically consists of a directive 

function for leadership and governing with a strategy, or adaptable plan, for addressing 
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the operational environment; essential resources allowing the enemy to exist, such as 

money or even a supportive populous; key supporting infrastructure allowing the enemy 

to translate strategy into action; and some means to carry out strategy, such as armed 

forces.  Effects are generally aimed at affecting one or more of these elements (USAF, 

2003:10). 

Table 3.  Effect Attributes 

 

An effect is a state change in a system brought about by an input to the system 

(Smith, 2002:111; Gallagher, 2004:9; Lowe, 2004:4).  An effect can be categorized in a 

number of different ways (Table 3).  The first attribute of an effect is order.  A first order 

effect, or direct effect, is the result of actions with no intervening mechanism between a 

deliberate action and its corresponding state change.  Higher-order effects, or indirect 

effects, on the other hand, are effects created via intermediate effects, or mechanisms, 

which can be traced back to the original action that brought them about (Lowe, 2004:5).  

Attribute Types 

Order Direct (First-order) 
Indirect (Higher-order) 

Timing Parallel 
Sequential 

Impact Cascading 
Cumulative 

Intent Intended 
Un-intended (Collateral) 

Result Positive 
Negative 

Persistence Permanent 
Non-temporal 

Domain 

Physical 
Functional 
Systemic 

Psychological 

Level 
Tactical 

Operational 
Strategic 
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Effects can also be classified by timing.  Parallel effects are effects planned to occur at or 

near the same time while sequential effects occur one after another in series. 

Another attribute of effects is impact: cascading or cumulative.  Cascading effects 

ripple through a system, degrading or affecting other associated elements of the systems.  

Cumulative effects, on the other hand, are the aggregation of many smaller direct and 

indirect effects.  Effects can also be described by intent.  Intended effects were expected 

to happen while unintended effects, or collateral effects, were not expected. 

Result is another way to discuss effects.  Correspondingly, effects can have either 

a positive or negative influence on friendly operations (USJFC, 2003b:17).  Effects can 

be classified by persistence as well.  For instance, an effect may be permanent or its 

impact may decay over time.  Domain is another important aspect of effects.  In the 

physical domain, effects are ‘local’ and created by direct impact, through physical 

alteration of an object.  In the functional domain, effects represent an impact on the 

capability, in part of a system, to operate properly (Mann, 2002:37).  Systemic effects, 

however, concern system wide impacts.  Finally, psychological effects are aimed at 

influencing the emotions, motivations, or reasoning of individuals and groups (Mann, 

2002:38).  Alternatively, an effect’s domain can be classified as either physical, 

informational, or cognitive, where the physical domain is where physical actions take 

place, the information domain is where actions are detected and reported to higher 

authority, and the cognitive domain is where decisions as to how to respond at various 

levels are made (Smith, 2002:161; USAF, 2005:3).  Finally, effects can exist at the 

tactical, operational, and strategic levels of war (USAF, 2003:8). 
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Figure 7.  Effects and Causal Links 
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The system concept can also be used to describe friendly forces.  Thus, a conflict 

can be viewed as a collision of the system describing friendly forces and the enemy’s 

system.  Using this as a basis, a construct for thinking about and implementing effects 

can be developed (Figure 4).  As noted earlier, a key point, especially with regard to 

measuring results of actions, is delineating system boundaries.  The boundaries of a 

system are where elements of the system interact with elements outside the system.  

Everything outside this boundary is considered a system’s environment. 

Effects result from inputs to a system.  These inputs can be uncontrollable 

environmental factors or they can be driven from within a system, such as when a country 

seeks out and obtains monetary aid.  Inputs can also be driven externally, as when an 

adversary attacks.  In this sense, the adversary’s system is using its own inputs 

(resources) and transforming them into actions.  This output then becomes an input to the 

system being attacked as depicted in Figure 4.  The transformation of inputs to outputs is 

a measure of efficiency and is generally referred to as a Measure of Performance (MOP).  

The adversary’s outputs, or inputs to the system being attacked, create an effect, or state 

change.  The state change is gauged using a Measure of Effectiveness (MOE).  Further, 

the culmination of effects creates some condition or outcome which can be measured by a 

Measure of Outcome (MOO).  These outcomes shape the system’s behavior.  Often no 

distinction is made between MOOs and MOEs with MOOs being assumed as strategic 

level MOEs. 

Figure 4 significantly understates the complexity of the cause-effect chain from a 

deliberate input to a corresponding system state change.  The influence diagram in Figure 

7 gives a better sense of the complexities involved.  However, in reality, identifying and 
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definitively articulating the cause-effect linkages between the strategic, operational, and 

tactical levels, as well as the impact of controlled and uncontrolled inputs, is extremely 

difficult, if not impossible (Kaplan, 1996:76; Sink, 1985:86). 

The first aspect of the problem is the abstract nature of the system and the desired 

change.  Essentially, military action is aimed at changing the collective will of a group, 

where ‘will’ has no physical form (Meilinger, 1999:50).  The cause-effect relationships 

are difficult to discern because the system being attacked is actually a system-of-systems.  

The sub-systems are all interconnected, with the output of one sub-system being the input 

to one or more other sub-systems.  Additionally, these sub-systems may be ill-defined, 

hidden, unknown, and/or inaccessible (Leonard, 2004:35).  Further, there may be a 

dynamic delay between a system input and when the impact of that input is detectable 

(USAF, 2003:8).  Finally, the cause-effect relationships can change as the system adapts 

to its new, effects shaped environment (Kaplan, 1996:84). 

The problem of identifying these cause-effect chains is one of the major 

objections to EBO.  The idea that a group of numerical indicators can determine strategic 

progress towards victory will always be in question (Murry, 2001:134).  However, those 

championing EBO have recognized this as a problem and in response have put effort into 

identifying these links as the first step of effects-based planning (USJFC, 2003b:18).  The 

process of uncovering these ‘effect-node-action-resource’ links is called the operational 

net assessment (ONA).  ONA integrates people, processes, and tools to build shared 

knowledge of opposing forces, the environment, and friendly forces.  The focus of ONA 

is to understand key relationships, dependencies, and vulnerabilities within and across 

political, military, economic, social, information and economic systems.  The resultant 
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analysis provides insight on ways to influence an adversary which can then be used to 

develop alternatives for decision makers on how to achieve desired outcomes (USJFC, 

2003b:4).  Despite the emphasis on uncovering these relationships, it is still a very 

challenging endeavor.  However, a number of approaches have been developed to model 

effects. 

MODELING EFFECTS 

I can calculate the motions of heavenly bodies, but not the madness of people. 
      – ISAAC NEWTON, 1642 – 1727 
 

As already suggested, before a system can be measured, it is first necessary to 

know something about the system.  However, the very reason for measuring the system 

may be to obtain an understanding of it.  This line of reasoning suggests, if one wants to 

measure a system, one first has to know something about it, and if one has enough 

knowledge to measure the system then, one can, at least to some degree, model it.  The 

reverse should certainly be true:  If one has modeled a system, implied is that the system 

is understood (at least to the level of modeling), and if the system is understood, insights 

on how to measure the system should be evident.  In fact, one should be able to use the 

model itself as a measuring instrument for the system of interest.  Based on this logic, 

what follows is a review of some of the current approaches to modeling military 

effectiveness.  Although no single approach captures all the concepts surrounding 

military effects, collectively they represent the required, known core elements. 

In general, existing approaches to modeling military effects can be grouped into 

three broad categories including Non-linear Sciences, Influence Networks, and Value-

based Models. 
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• Non-linear Sciences – The non-linear sciences encompass non-traditional analysis 

techniques from fields such as Complexity Theory and Chaos Theory.  These 

techniques are especially well suited for exploring the non-linear dynamics of 

systems which arise from repeated interaction and feedback (Khalil, 2002).  

Warfare is often characterized in such a manner (Schmitt, 1999:5).  Thus, it is no 

surprise there have been many efforts to use the non-linear sciences to model 

military actions and their resulting effects.  The basic concept behind the non-

linear sciences approach is that cause-effect relationships are modeled implicitly 

and inputs to a system bring about a change or ‘emergent behavior’ resulting from 

the collective consequences of the inputs, where ‘emergent behavior’ is a non-

linear science term for strategic effect (Bullock, 2000:63). 

The US Marine Corp began experimenting with Complexity Theory and 

Chaos Theory, which is typically implemented as a complex adaptive system 

using agent-based modeling, because existing models did not capture the way 

Marines fight with respect to maneuver warfare (Ilachinski, 1997).  The US Air 

Force also explored using agent-based models to capture airpower strategic 

effects (Bullock, 2000).  Although the efforts produced promising results (Hill, 

2003:17), the non-linear sciences typically use a ‘bottom-up’ orientation, 

requiring every element in the system to be modeled and in turn making the non-

linear sciences approach very data intensive and time consuming.  This reality 

would make the non-linear science approach difficult to use for deliberate and 

crisis planning.  In addition, the implicit cause-effect mechanisms can be difficult 

to validate (Champagne, 2003:12).  Because of these obstacles, non-linear science 
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approaches are often considered to be in the realm of fundamental science and 

exploratory analysis (Henningsen, 2003:89). 

• Influence Networks – While the non-linear sciences model cause-effect 

relationships implicitly, influence networks model these mechanisms explicitly.  

Although an influence network is a specific type of tool, here it is also used to 

describe a family of techniques that include Bayesian Networks, System 

Dynamics, and Input-Output models.  In general, these modeling approaches are 

composed of a network of nodes and arcs where the arcs characterize the 

relationships, or flows, between elements in the system represented by the nodes.  

These types of approaches have the flexibility of not only being able to model 

physical networks, such as a communications network, but can address abstract 

processes and situations as well, such as a social network.  The exception to this 

are Input-Output models which typically focus on ‘commodity flows’ on which 

the system elements are dependent (Snodgrass, 2000:7; Snodgrass, 2004). 

There are numerous benefits to using influence network approaches.  

Tools implementing these methods, such as the Situational Influence Analysis 

Model or SIAM (Rosen, 1996), tend to be graphical in nature and thus, have a low 

leaning curve and are very intuitive for the user.  Additionally, the critical 

thinking required to identify the elements in the system being modeled and the 

relationships between the elements has a significant benefit beyond insights 

provided by the model output.  Thus, influence network approaches would greatly 

benefit ONA efforts.  Further, influence networks have been successfully 

integrated with various ‘legacy’ models (Snodgrass, 2000; DeGregorio, 2004). 
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Another important benefit of influence network approaches is they can be 

used as a tool for planning as well as strategy monitoring during plan execution.  

A model built during planning to evaluate courses of action can be transparently 

used to monitor plan progress.  As probabilistic future events come to fruition and 

become known, they can be incorporated into the model as ‘evidence’ providing 

immediate feedback on changes in the probability of success in achieving a 

desired end-state (Levis, 2001:17). 

Despite these benefits, influence network approaches have some 

drawbacks.  In general, influence networks have unidirectional flow and do not 

incorporate feedback.  This makes it difficult to encompass the dynamic interplay 

characterizing a clash between adversaries.  Further, many influence network 

implementations do not include time as an input parameter, which is clearly a 

crucial element in modeling conflict.  However, recent efforts have included time 

to capture the persistence of an effect due to certain actions, providing insight on 

the impact of timing and the synchronization of actions on outcomes, as well as 

yielding insight on the probability of success as a function of time (Levis, 

2001:12).  Additionally, the discipline of System Dynamics, which is focused on 

developing models of dynamical systems, by design includes feedback as well as 

time parameters (Forrester, 2003; Byrnes, 2001). 

• Value-based – Value-based approaches attempt to characterize what is important 

within a decision context and then describe those elements in a mathematical 

formula.  Specifically, the motivation is to determine what is important to ones 

own forces and what is important to the adversary; then protect what is important 
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to you and put what is important to the adversary at risk.  This is the basic concept 

proposed by Thomas Schelling in Arms and Influence (1966), despite his 

emphasis on strategic bombing of the populous as the means of influence. 

Value-based models have shown promise in forming the foundation of 

cognitive models of an enemy (Davis, 2001:76; Whittemore, 1999).  Typically, 

however, value-based approaches focus on what is ‘valuable’ from a military 

capability standpoint (Doyle, 1997).  Technically, these approaches specify tasks, 

objectives, and/or values, prioritize them through weighting, and then quantify 

and normalize them on a scale from zero to one.  Success and threshold levels are 

also identified.  With each of the elements weighted so the sum of the weights 

equals one, the elements can be combined into a single mathematical formula 

providing a decision maker an indication of overall accomplishment (Larimer, 

2004). 

Warfare can be described as a clash of highly interconnected system-of-systems 

where ‘soft factors’ driven by the ‘human element’ are pervasive.  While most would say 

this is an accurate description of warfare, the description is certainly not unique to 

warfare.  Other disciplines, such as economics and political science, face the same type of 

conflict modeling challenges faced in the military realm.  Many of the modeling 

approaches in these fields are applicable to combat. 

Arguably, one of the most seminal works in political science attempting to 

characterize conflict is The War Trap (Bueno de Mesquita, 1981; Bueno de Mesquita, 

1985).  The War Trap presents a mathematically robust, decision-theoretic based, general 

theory of war focused on conflict initiation and escalation.  Although its ‘expected-utility 
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theory of war’ is focused on what causes war, the formulation provides insight on how 

systemically derived statements about conflict and their relationship to empirical 

evidence can lead to generalizations about complex phenomenon. 

The ‘expected-utility theory of war’ model purports to include rational, war-or-

peace decision making with variable orientations towards risk and uncertainty as well as 

adjustments for national power and capabilities.  The goal of the model is to discriminate 

between those who might expect gain from war and those who would expect to suffer a 

net loss if they started a war.  Fundamentally, the model is based on the following factors: 

1) the relative strength of the attacker and the defender, 2) the value the attacker places 

on changing the defender’s policies relative to the possible changes in policies the 

attacker may be forced to accept if it loses, 3) and the relative strength and interests of all 

other states that might intervene in the war. 

While the aim of the ‘expected-utility theory of war’ model was to develop a 

theoretically sound explanation for conflict decision making, it was missing a key 

element: strategic interaction (Maoz, 1985:88).  Expected-utility, and decision theory 

techniques in general, do not account for the impact a decision will have on other 

decision makers and do not factor in the decisions of others for the decision at hand.  This 

deficiency was obviously recognized, as a game-theoretic version of the theory appeared 

in War and Reason (Bueno de Mesquita, 1992). 

Game Theory is a framework for thinking about strategic interaction and helps 

formulate an optimal strategy by forecasting the outcome of strategic situations (Beebe, 

1957:1).  The idea of a general theory of games was introduced by John von Neumann 

and Oskar Morgenstern in 1944, in their book Theory of Games and Economic Behavior.  
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They describe a game as a competitive situation among two or more decision makers, or 

groups with a common objective, conducted under a prescribed set of rules and known 

outcomes (von Neumann, 1944:49).  The objective of Game Theory is to determine the 

best strategy for a given decision maker under the assumption the other decision makers 

are rational, or consistently make decisions in alignment with some well-defined 

objective, and will make intelligent countermoves, where intelligent implies all decision 

makers have the same information and are capable of inferring the same insights from 

that information (von Neumann, 1944:51). 

Clearly, strategic interaction is a crucial component when analyzing international 

conflict or economic situations.  Although War and Reason and Theory of Games and 

Economic Behavior are focused on conflict at a strategic level, Game Theory has proven 

to be useful for characterizing interaction at the operational and tactical levels as well 

(Hamilton, 2004:3).  Despite a rich history in military modeling, Game Theory is 

noticeably absent in EBO modeling approaches.  Although the focus of this research is on 

measuring effects versus modeling them, the concepts behind Game Theory are important 

in understanding the military measurement context (Gartner, 1997:5).  A more detailed 

review of Game Theory can be found in Appendix A. 

CURRENT STATUS 

...things are to you such as they appear to you 
and to me such as they appear to me... 

      – PROTAGORAS, 485 – 421 B.C. 
 

Currently there is no explicit, theoretical foundation for measuring effectiveness.  

Additionally, attempts at just defining effects concepts have focused on action verbs 

which violate the requirement for effects to be invariant to means of achievement 
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(Gallagher, 2004:9).  Given that these measures provide feedback on strategic direction 

and thus, significantly influence irrevocable decisions concerning allocation of scarce 

resources, a Theory of Effectiveness Measurement is needed.  The purpose of such a 

theory would not be to replicate reality in a specific domain, but to provide a coherent, 

organized approach to understanding complex, real events in general.  Such a theory 

would be based on theorems, axioms and assumptions providing a basis for simplifying 

and organizing reality by delineating the precise conditions and domain where the theory 

holds, and the ramifications when the conditions are violated.  Such axioms and theorems 

would help the analyst discriminate critical phenomenon from incidental phenomenon, 

providing a basis for simplifying a complex reality without distorting its essential 

characteristics (Bueno de Mesquita, 1981:10; Gartner, 1997:9).  Clearly, there are no 

definitive measures which can be prescribed for every objective across every application 

area (Fenton, 1994:200; Park, 1996:1).  Because of this, effectiveness measurement 

concepts need to be defined in general along with the mathematical properties that 

characterize these concepts, regardless of the specific attributes to which the concepts are 

applied. 

Key elements supporting a Theory of Effectiveness Measurement include precise 

definition of concepts, theorems and properties concerning the concepts, and a formalized 

notation for discussing the concepts in terms of mathematics.  Under propositional logic, 

such an axiomatic-based theory would ensure proof of logically true propositions.  

However, logical proof does not necessarily guarantee anything of interest will be 

revealed.  A logically true, but empirically trivial or irrelevant theory is of little 

operational value (Wacker, 2004: 631).  With respect to war, too many seemingly valid 
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measures may provide a confusing and competing indication of strategic performance.  

Additionally, interpretation of measures can be problematic even when the inherent noise 

accompanying factual information is discounted (Gartner, 1997:8).  Therefore, this 

research includes an empirically feasible framework demonstrating the benefits of the 

theory, all of which will be discussed in more detail in the sections to follow. 
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

III.  RESEARCH METHODOLOGY 

 

OBJECTIVE & TASKS 

The objective of this research was to develop a theoretically-based, but 

empirically feasible approach to measuring effectiveness.  Theoretically-based implies 

mathematically rigorous and a connection to existing, established theories.  Empirically 

feasible, on the other hand, implies robustness, intuitiveness, and practicality.  To achieve 

these somewhat conflicting sub-objectives required the following new contributions. 

1) Scope Problem – This task involved establishing a foundation for approaching 

the problem of measuring effectiveness.  The task required developing a conceptual 

construct and bounding the problem in such a way as to ensure precision when 

mathematical operators are applied.  However, the framework needed to be flexible 

enough to accommodate a wide array of domains and measurement endeavors.  This task 

was accomplished by integrating the concepts of effects and EBO into the 

representational view of measurement. 

2) Define Concepts – Effects and EBO have been areas of critical interest in the 

DoD since the 1991 Gulf War.  Because of this, numerous efforts originating within the 

DoD and external to it, including international efforts, have sought to develop a widely 

accepted effects lexicon.  Unfortunately, the goal has yet to be met and a precise, 

operational definition of effects for EBO is still being debated (Gallagher, 2004:9).  This 

task involved synthesizing key tenets from the existing, although disjoint, effects 

literature. 
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3) Develop Notation – The purpose for developing notation was to establish a 

formal language in order to discuss the qualitative concepts of effects in quantitative, 

mathematical terms.  Since the theory resulting from this research is generic and not tied 

to any specific domain or measurement effort, this step was critical since mathematics 

allows the potential for truth to be established independent of reality (Zuse, 1998:7).  

Additionally, mathematical notation was a critical enabler for accomplishing the next step 

of establishing the theory (Wacker, 2004: 632). 

4) Establish Theory – The purpose of effectiveness measurement is to obtain 

objective information for use in strategic decision-making.  However, one cannot be 

assured of objective information from effectiveness measurements unless they are based 

on a firm theoretical foundation (Zuse, 1998:9).  This final task, building off the previous 

three, established such a foundation.  Because of the desire for the theory to be domain 

independent, an axiomatic approach was used.  The axioms represent basic assumptions 

about reality.  Clearly, such a rule-based framework will not hold under all 

circumstances.  However, the advantage of an axiomatic approach is that the conditions 

under which the theory holds can be clearly delineated (Zuse, 1998:10). 

The above four tasks represent the core contributions of this research.  In 

summary, task one establishes a formal context for thinking about effectiveness 

measurement.  Task two develops unique terminology for effectiveness measurement.  

Task three, then devises notation, or in-other-words, the syntax of effectiveness 

measurement.  Finally, task four, through a framework of axioms, creates a mechanism 

for selecting, interpreting, and comparing effectiveness measurements, or essentially, the 

semantics of effectiveness measurement. 
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The above four tasks yield a deterministic, effectiveness measurement framework.  

‘Deterministic’ implies perfect information.  As noted in a previous section, however, 

uncertainty and error in measurement is inescapable.  Additionally, some would suggest 

the crux of the problem in measuring effectiveness is uncertainty (Murray, 2001; Glenn, 

2002; Bowman, 2002).  Thus, a probabilistic framework for reasoning about this error 

and uncertainty is needed. 

The uncertainty exists at many levels.  Since for most domains of interest, key 

attributes will not likely have a direct, natural measure, proxy measures will have to be 

used.  This is tantamount to developing a model of the attribute.  Thus, the first aspect of 

uncertainty concerns whether the model spans the attribute, or in-other-words, if the 

model is collectively exhaustive.  Another, perhaps more fundamental issue of 

uncertainty, involves whether the right measures are being used to represent a system 

attribute.  A final aspect of uncertainty involves the measurements themselves.  Each 

measurement, or observation, is essentially a draw from some distribution; however, 

numerous draws from the distribution may be costly, time prohibitive, or just not 

possible.  In fact, many circumstances may only allow for one observation (e.g. satellite 

image).  Thus, the uncertainty is in the form of not knowing where on the distribution the 

obtained observation lies (i.e. is it at the mean or an outlier). 

There are a number of established approaches in other fields for dealing with 

these types of uncertainty including Kalman filters, Bayesian techniques, and the Theory 

of Evidence to name a few.  This research task, addressing probabilistic reasoning, 

explored these approaches within the context of measuring effectiveness, establishing the 
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benefits and downside to each, in an effort to determine which technique best supported 

the deterministic framework. 

All the above tasks, resulting in the deterministic and probabilistic frameworks for 

measuring effectiveness, complete the Theory of Effectiveness Measurement.  However, 

a key goal of the research was to ensure the resulting effectiveness measurement 

methodology was pragmatic.  Thus, to meet this final research objective, the frameworks 

were demonstrated in a military scenario.  This entailed systematizing the theory into a 

series of steps for application to effectiveness measurement problems.  Additionally, this 

involved demonstrating the consequences of violating the conditions set forth in the 

axioms of the theory.  A key impediment to accomplishing this final task was availability 

of data.  Most available data on historical military battles is attrition-based and not effect-

based oriented.  Thus, a notional scenario was developed in a combat simulation model 

called Point of Attack.  Output data from the scenario was then used as a basis for 

demonstrating the effectiveness measurement frameworks. 
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

IV.  RESEARCH FINDINGS 

 

DETERMINISTIC FRAMEWORK 

The first step in developing a Theory of Effectiveness Measurement is 

establishing a philosophical view of effects.  While the purpose for creating effects is 

commonly understood, there is less consensus on the conceptual meaning of an effect as 

evidenced by the number of effect attribute combinations (Table 3).  Current effects 

literature is dominated by a verb-centric philosophy, implying an effect is a consequence, 

or result, of a particular action.  However, significant confusion arises from this approach 

due to different interpretations and the imprecise meanings of words (Gallagher, 2004:9).  

A more precise paradigm is to simply view an effect as a change, or more specifically a 

system state-change (USAF, 2003:8, USJFC, 2003:17). 

For example, let an empirical SYSTEM of interest, A, with ELEMENTs, a, be 

represented as A = 〈 a1,…, an 〉 where ai ∈ a, for i = 1 to n, are the elements, or 

SUBSYSTEMs, germane to the measurement context.  For a world actor, United States 

Joint Forces Command defines these elements as political, military, economic, social, 

infrastructure, and information sub-systems, or PMESII (USJFC, 2003b:16).  

Additionally, ‘of interest’ implies there is a clearly defined, desired behavior, or END-

STATE, for A, and if the current behavior differs from the desired behavior, some action 

will be taken. 
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Further, let xA = 〈 x1,…, xn 〉 be the formal representation of the empirical system, 

or the MODEL, where xi ∈ x are formal representations of ai ∈ a.  Alternatively, the 

formal representation could be a function of the elements, xA = f( x1,…, xn ).  

Additionally, for i = 1 to n, let xi = 〈 α1,…, αm 〉, where αj ∈ α, for j = 1 to m, are the 

relevant ATTRIBUTEs (or NODEs) characterizing element xi, out of all possible 

attributes, α.  These attributes are identified during the Operational Net Assessment, 

along with LINKs, or the relationships between attributes (McCrabb, 2001:28), and 

MECHANISMs which explain the causal and temporal aspects of system wide changes 

(Gill, 1996:175).  Finally, both the elements, xi, and the attributes, αj, can be reduced to 

facilitate quantification yielding xi = f( xi1,…, xin ) and αj = f( αj1,…, αjm ). 

A MEASUREMENT, or observation, is a particular manifestation or instantiation of 

an attribute (McCrabb, 2001:28).  System attributes provide a true gauge of the system 

status.  With respect to system measurement, attributes can be broadly categorized by 

awareness and measurability.  Thus, attributes can be known and measurable, unknown 

and measurable, known and un-measurable, or unknown and un-measurable.  If an 

attribute is known and measurable, the measurement task is relatively straightforward 

since the attribute will likely have a natural and direct measure (e.g. money, time).  Most 

attributes of interest, however, cannot be directly measured and require an indirect, or 

proxy MEASURE, ά, where ά ≈ α.  Further, several proxy measures may be required to 

assess a particular attribute yielding αj ≈ f( άj1,…, άjp ), where p is the number of 

measures used to characterize αj.  Additionally, a measure, άj1, could be composed of 

lower level measures (i.e. άj1 = f( άj11,…, άj1q )), where q is the number of measures used 

to characterize the higher level measure, άj1.  The lowest level measures can be 
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considered ‘atomic’ measures, since they cannot be further reduced.  Finally, a system 

STATE, St, is a particular instantiation of all atomic measures and thus, an instantiation of 

all system attributes (or state variables) at a particular point in time, t (Lowe, 2004:4). 

Anything not encompassed in x is considered to be the system’s ENVIRONMENT 

where system INPUTS originate.  Inputs can be deliberate or can be uncontrollable 

environmental factors.  Deliberate inputs, or control variables, are derivative of 

RESOURCES, y.  Like atomic attributes, or attributes that cannot be reduced into more 

basic attributes, resources are primitives, or basic inputs, and consist of essentials such as 

information, money, people, and equipment.  When choreographed and orchestrated, the 

resources become a means of influence (Mann, 2002:30), or a CAPABILITY, C.  

Formally, C = f( y ), assuming the capability to plan and bring together resources is also a 

resource.  It should be noted, capability, as it is used here, implies more than material 

capabilities, but encompasses the ability to exercise influence, as well as the ability to 

resist the influence attempts of others (Geller, 1998:57). 

It follows, an EFFECT, E, is a system state change, or a change in one or more of 

the system state variables.  Additionally, time, t, is a fundamental parameter in measuring 

effectiveness since inputs do not yield instantaneous results, but propagate, culminate, 

and dissipate in a system over time (McCrabb, 2001:10).  Further, these system changes 

are brought about by the inputs (Lowe, 2004:4).  As noted, inputs can be controllable and 

uncontrollable so, system INFLUENCE can be stated as I = f( C, InputsUncontrollable ), 

yielding E = f( I , t ). 
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Figure 8.  Concept of Effectiveness Measurement 

Table 4.  Fundamental Definitions 

 

DEFINITION 1: A SYSTEM is a set of elements where relationships exist between 
the elements and the SYSTEM has a purpose or normative 
behavior. 

 

DEFINITION 2: A system ELEMENT, or SUBSYSTEM, is a system providing 
functionality or support to a parent system. 

 

DEFINITION 3: A MODEL is a formal image of an empirical structure. 
 

DEFINITION 4: An ATTRIBUTE, or NODE, is a characteristic, feature, or 
property of a system that is directly or indirectly observable. 

 

DEFINITION 5: A MEASURE is a model of an attribute. 
 

DEFINITION 6: A MEASUREMENT, or observation, is a particular manifestation, 
or instantiation, of an attribute. 

 

DEFINITION 7: A system STATE is a particular instantiation of all system 
attributes, or state variables, at a particular point in time. 

 

DEFINITION 8: An EFFECT is a system state change. 
 

DEFINITION 9: EFFECTIVENESS gauges the magnitude of a system state 
change. 

 

DEFINITION 10: An END-STATE characterizes the desired measurements for all 
system attributes, or state variables. 
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EFFECTIVENESS gauges the magnitude of a system state change due to these 

influences.  Thus, EFFECTIVENESS = Δ( xA, t = 0, xA, t = T ) ≈ Δ( At = 0, At = T ) gauges the 

system impact from controllable and uncontrollable inputs between time t = 0 and time    

t = T.  Finally, a key point is while an effect occurs on the empirical system, effectiveness 

is measured on the formal system.  The precise definition of these concepts, along with 

their formalized language in terms of mathematical notation, is a cornerstone required for 

formal theory building (Wacker, 2004: 632).  Figure 8 summarizes these concepts 

pictorially.  In addition, Table 4 highlights definitions of key concepts to be extended in 

what follows. 

Although Figure 8 addresses the concept of effectiveness in a generic sense, 

Figure 8 does not imply a general notion of effectiveness.  This is a problem in the 

current literature which typically addresses effectiveness in generalities.  For example, in 

response to an action, the question, “How effective was it?,” has no meaning.  In fact, it 

can be shown analytically a general-purpose, real-valued effectiveness measure, with the 

minimum assumption of an ordinal scale, does not exist. 

THEOREM 1:  A general notion of effectiveness does not exist. 
 
PROOF:  Let S be the set of all possible system states and Si, t=T ∈ S be the 
system state at time t = T resulting from input i.  Additionally, let St=0 be 
the starting system state and Se be the desired end-state.  For independent 
system inputs, x and y at t = 0, system effectiveness is characterized by an 
empirical relation system which includes the relation <E, Se, where <E, Se 
can be interpreted as “is less effective than, with respect to Se” and E is the 
measure of effectiveness of the input with respect to Se at t = T.  However, 
for such a formalism to exist requires E: S × Se → R ∋ <E, Se holds ∀S ∈ S.  
This suggests Sx, t=T <E, Se Sy, t=T ⇒ E(x) < E(y).  While <E, Se may clearly 
hold for some states, others states at time t = T resulting from inputs x and 
y will not be comparable due to imprecision in the meaning of 
‘effectiveness’.  This suggests <E, Se is not a total order on S × Se while < is 
a total order on R.  This violates Cantor’s Theorem (Fenton, 1994:201); 
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specifically, the negative transitivity aspect of the strict weak order 
property: ∀ Sx,y,z, t=T ∈ S, (Sx, t=T <E, Se Sy, t=T ⇒  (Sx, t=T <E, Se Sz, t=T ∨ Sz, t=T 
<E, Se Sy, t=T)). � 
 

To illustrate the consequences of this theorem, using Figure 8 as a reference, let 

there be two actions, y and z.  At t = T, y results in xA = 〈 -.2, .7,…, .3, .5 〉 while z results 

in xA = 〈 .8, .5,…, -.4, .4 〉.  Which action, y or z, was more effective?  THEOREM 1 

asserts this question cannot be answered.  Thus, effectiveness measurements must always 

be with respect to specific system attributes from which it follows, E: S × Se must be 

mathematically complete (i.e. ∀ Si, Sj ∈  S, ((Si ≤E, Se Sj) ∨ (Sj ≤E, Se Si))). 

Clearly, however, developing a universal set of system attribute effectiveness 

measures is futile.  But, an axiomatic framework can provide a sound foundation and 

guidance for developing all specific system effectiveness measures.  Thus, although there 

is no general notion of effectiveness, for specific effectiveness measures, there is a need 

to define effectiveness measurement concepts and define precisely the mathematical 

properties that characterize these concepts, regardless of the specific system attributes to 

which these concepts are applied. 

In Measurement Theory, the empirical understanding of a system attribute is 

formalized through definition of an empirical relational system.  A measure is valid if it is 

a homomorphism from the empirical relational system into a formal relational system, or 

in other words, if the measure maps system attributes into values such that all empirical 

relations among the attributes are preserved as formal relations among the measurement 

values (Poels, 2000:35).  Clearly, the crux of the problem in effectiveness measurement is 

most aspects of the empirical relational system, such as links and mechanisms, are ill-
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defined or unknown.  However, the empirical aspects of a system that are known can be 

formalized as a set of desirable properties for the system measures.  Thus, instead of 

explicitly defining the formal relational system, an axiomatic approach defines properties 

for the formal system based on properties of the empirical relational system (Poels, 

2000:35). 

The entire field of mathematics is axiomatic-based where concepts are defined 

using necessary and sufficient sets of rules.  One such concept, from Measure Theory, is 

called a metric.  As noted earlier, in measurement practice, a metric generally represents 

a system of measurement composed of the system attributes, the units of measurement, 

and unit reference standards (Geisler, 2000:75).  In mathematics, however, a metric has a 

precise definition which is developed in this section.  First, however, to define a metric, 

or a ‘measure of distance’, a measurable space needs to be defined. 

An algebra, on a set S, is a collection, A, of subsets of S where S, Ø ⊂ A, A ∈ A 

⇒  ~A ∈ A, where ~A is the complement of A, and A1, A2,…, An ∈ A ⇒  U
n

i
iA

1=
 ∈ A.  In 

other words, an algebra is a collection of subsets of S, which contains S and is closed 

under the complement and finite union.  In this context, A is a measurable set.  Further, A 

is a σ-algebra when ∀i, i ∈ Z+, Ai ∈ A ⇒U
∞

=1i
iA  ∈ A.  Additionally, a measure, µ, is a 

non-negative set function on the σ-algebra, A, where µ(Ø) = 0, ∀A, B ∈ A, (A ∩ B) = Ø, 

µ(A ∪ B) = µ(A) + µ(B), and A = U
∞

=1i
iA ⇒µ(A) = ∑∞

=1i
μ (Ai) (countably additive).  It 

follows, (S, A, µ) is a measure space and (S, A) is a measurable space (Ruckle, 1991:80-

81).  A familiar example of these spaces is Cartesian space.  With these fundamental 

constructs established, a metric can now be defined. 
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A metric, δ, is a type of measure that gauges distances between entities.  

Specifically, a metric on a set S is a function δ: S × S → R+ ∋ ∀Si, Sj, Sk ∈ S, δ(Si, Sj) ≥ 0 

(non-negativity), δ(Si, Sj) = 0 ⇔  Si = Sj (identity), δ(Si, Sj) = δ(Sj, Si) (symmetry), and 

δ(Si, Sj) ≤ δ(Si, Sk) + δ(Sk, Sj) (triangle inequality), where × denotes the Cartesian product, 

or all ordered pairs of vectors in S (Marlow, 1978:2).  Additionally, if the second 

condition, δ(Si, Sj) = 0 ⇔  Si = Sj, is replaced with δ(Si, Sj) = 0 ⇒  Si = Sj, then δ is a 

semimetric or psudeo-metric (Cohn, 1980:8).  It follows, (S, δ) is a metric space.  The 

above demonstrates how mathematics, and specifically Measure Theory, defines a 

measure via rules or axioms.  Through the use of an axiomatic approach, measures can be 

‘validated’, where sufficiency is guaranteed by proving invariance with respect to the rule 

set. 

Measure Theory only addresses formal systems.  Measurement Theory, on the 

other hand, is focused on mapping empirical systems to these formal structures.  In other 

words, the formal representations are numerical structures used to represent the empirical 

systems.  Dimensional metric models, which are numerical representation of qualitative 

structures with coordinate-vector representations, using primitives such as points and 

comparative distances, are often used as the formal structures.  Dimensional metric 

models are based on two general concepts: 1) the representation of objects as points in a 

coordinate space and, 2) the use of metric distance to represent proximity between the 

points (Suppes, 1989:207).  The most basic Dimensional metric model is a Geometrical 

model (spatial), which depicts objects as points in a space such that the proximity 

ordering of the objects is represented by the ordering of the metric distances among the 

respective points (Suppes, 1989:159).  A familiar example of such a representation is 
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points in n-dimensional Euclidean space, which is a particular type of metric space.  The 

Measure Theory axioms required for a metric to be a measure on a formal structure were 

identified earlier.  It will be shown in what follows, a metric is also a measure according 

to Measurement Theory when axioms defining a proximity structure are satisfied. 

A proximity structure represents empirical relations, but is also a metric space in 

which any two points are joined by a straight line segment, along which distance is 

additive, yielding an ordering among the entities (Suppes, 1989:7).  To further elaborate 

on proximity structures, let ≤S, <S, =S be quaternary relations on S where                      

∀Si, Sj, Sk, Sl ∈ S, (Si, Sj) ≤S (Sk, Sl) means the difference, or conceptual distance, between 

Si and Sj is at most as great as the distance between Sk and Sl, (Si, Sj) <S (Sk, Sl) implies the 

distance between Si and Sj is not as great as the distance between Sk and Sl, and (Si, Sj) =S 

(Sk, Sl) suggests the distance between Si and Sj is the same as the distance between Sk and 

Sl.  It follows, (S, ≤S) is a proximity structure if and only if ∀ Si, Sj ∈  S, ((Si ≤S Sj) ∨      

(Sj ≤S Si)) (strongly complete), ∀ Si, Sj, Sk ∈  S, (((Si ≤S Sj) ∧ (Sj ≤S Sk)) ⇒  (Si ≤S Sk)) 

(transitive or consistent), ∀ Si, Sj ∈  S, ((Si ≠ Sj) ⇒  ((Si, Si) <S (Si, Sj))) (positivity),    

∀ Si, Sj ∈  S, ((Si, Si) =S (Sj, Sj)) (minimality), and ∀ Si, Sj ∈  S, ((Si, Sj) =S (Sj, Si)) 

(symmetry).  Thus, δ is both a formal and empirical metric, or measure of distance, if and 

only if, ∀Si, Sj, Sk, Sl ∈ S, (Si, Sj) ≤S (Sk, Sl)⇔ δ(Si, Sj) ≤ δ(Sk, Sl) (Suppes, 1989:160). 

This suggests every function satisfying the metric axioms is by definition a valid 

measure of distance when the system is a proximity structure.  In a similar manner, weak 

ordering on a metric space gives rise to a proximity structure (Suppes, 1989:162).  This 

implies effectiveness measures can be defined to measure the differences, or conceptual 

distances, between system states.  Thus, what follows is a framework for system 
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effectiveness measurement where measures, άj, for empirical system attributes, αj, are 

defined to hold for the properties of a metric giving rise to system state-spaces satisfying 

the properties of a proximity structure.  System effectiveness measurement then, is the 

difference, or conceptual distance, from a given system state to some reference system 

state (e.g. end-state).  By defining system attribute measures such that they yield system 

state-spaces characterized as proximity structures, differences in system states relative to 

a reference state over time can be gauged, resulting in an axiomatic definition of 

effectiveness measurement. 

The proximity structure is not the only way to formally represent a system.  There 

are numerous other types of structures.  These include Grassmann structures (Krantz, 

1971:229) and difference structures (Zuse, 1998:250) to name a few.  These structures 

are essentially axiomatic system models.  No particular structure is more correct than 

another.  Choice of a structure, or formal model, depends on empirical system 

assumptions, empirical system hypotheses, and the measurement context.  For example, 

to prove the properties of an extensive structure (Krantz, 1971:72) requires various 

combination rules such as concatenation (i.e. addition) hold.  However, this implies the 

elements in the measure space represented by the extensive structure have meaning if 

combined.  This may be true for many empirical systems, but for the effectiveness 

measurement framework presented here, there is no empirical meaning behind arbitrary 

combinations of systems states (i.e. points).  That being said, the proximity structure is 

well-suited to providing insight on system states relative to a reference system state (e.g. 

end-state). 
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It should be noted, ‘valid’ as it is used here, implies theoretical validity suggesting 

the measure, άj, satisfies all of the axioms established to define the formal system, or 

model.  Although definition of system attributes as distances, during the ONA, should 

reflect empirical understanding of the system attributes, theoretical validity does not 

imply empirical validity.  To define an empirically valid measure, however, requires 

certainty about the underlying structure of the empirical system to include attributes, 

links, and mechanisms.  Clearly, for real-world systems, especially for those as complex 

as in the military realm, this information will be less than certain.  Despite this 

uncertainty, to develop a framework to make quantitative statements about a qualitative, 

or empirical, system requires a specification, or product structure, for the system; in other 

words, a robust process for developing the system model, xA.  Such processes can be 

found in Decision Theory, and specifically Value Focused Thinking (Keeney, 1992), 

where structured processes are used to reduce an abstract objective of a complex decision 

problem into values indicating why the problem is important and further, into 

quantifiable attributes that can be used to rank order alternatives to achieve the objective.  

One such process, modified to serve as a generic system state specification, or product 

structure, for the purpose of measuring effectiveness, is described in the steps below. 

1.  System Identification.  This first step is crucial since it 

determines the system boundary.  An empirical system, A, and its formal 

representation, xA, should encompass all pertinent aspects of a desired 

end-state. 

2.  Sub-system Identification.  For the identified empirical system, 

A, and its formal representation, xA, identify empirical sub-systems,         
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ai ∈ a, and their formal representations, xi ∈ x, where A = 〈 a1,…, an 〉 ≈ xA 

= 〈 x1,…, xn 〉.  An empirical system, A, will likely have many possibilities 

for decomposition into smaller sub-systems, ai ∈ a.  Choice of sub-

systems should be limited to those that support the measurement context.  

Additionally, like the parent system, each sub-system will have its own 

boundary within the parent system.  Ideally, the sub-systems should be 

defined in such a way that sub-systems are disjoint, or mutually exclusive, 

from other sub-systems.  It should be noted, however, empirical systems 

of interest are often highly interconnected and mutually exclusivity may 

not be achievable (i.e. A = 〈 a1 〉).  Further, subject matter expert, mental 

models may have to be used when there is little understanding about 

system interconnectivity. 

3.  Define Sub-system Relative Importance.  All identified sub-

systems should be relevant to the measurement context; however, they 

may not all have the same level of relevancy.  For all sub-systems, the 

relative importance among sub-systems must be defined.  This amounts to 

weighting each of the sub-systems with respect to the other sub-systems.  

This can be done by developing a number (Keeney, 1992:148), wxi, for 

each sub-system, xi ≈ ai, where 0 ≤ wxi ≤ 1 and ∑
=

n

i 1
wxi = 1. 

4.  Attribute (Node) Identification.  Each sub-system, xi ≈ ai, can be 

characterized by certain salient features, or attributes, αj.  Like the sub-

systems, there will likely be a number of attributes from which to choose.  
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However, only attributes relevant to the measurement context should be 

used.  Thus, for each sub-system, xi, with attributes αj, xi = 〈 α1,…, αm 〉 

for j = 1 to m, where m is the number of relevant sub-system attributes. 

5.  Define Attribute (Node) Relative Importance.  Like the sub-

systems, all identified attributes, αj, should be relevant to the measurement 

context but, they may not all have the same level of relevancy.  For all 

attributes within a sub-system, the relative importance among the 

attributes must be defined.  Again, this amounts to weighting each of the 

attributes with respect to the other attributes within a sub-system.  This 

can be done by developing a number (Keeney, 1992:148), wαj, for each 

attribute defining a sub-system where 0 ≤ wαj ≤ 1 and ∑
=

n

i 1
wαji = 1. 

6.  Measure Development.  Each attribute, αj, needs to be 

quantified.  Attributes may need to be further reduced for quantification 

purposes.  The basic measure development approach is to iteratively 

decompose the attribute into more basic attributes until they are so 

narrowly defined, a measure for attribute αj, άj, suggests itself (Sink, 

1985:86).  These will typically be in terms of counts (e.g. number of 

sightings in a day). 

If the above reductionist approach does not yield atomic attributes 

with natural measures, constructed measures have to be used (Keeney, 

1992:103).  The first step in building a constructed measure for an 

attribute is to characterize the desired end-state, as well as the starting 
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state, in terms of the attribute.  Then, define possible intermediate states 

between the starting state and end-state, or in-other-words, construct a 

model of the distance between states of xA ≈ A with respect to άj ≈ αj.  

Additional system states in the neighborhood of the starting state should 

also be defined to encompass possible negative consequences, or 

deliberate system inputs that lead away from the desired end-state.  

Definition of the intermediate states, essentially defines the units for the 

constructed measure άj.  Regardless of type of measure, however, natural 

or constructed, άj needs to hold for the properties of a metric.  That is, 

each άj must hold for non-negativity, identity, symmetry, and the triangle 

inequality properties.  A measure, άj, meeting these properties will be 

identified by δαj to signify it is both a measure of αj and a metric.  Thus, 

δαj ≈ αj. 

Using this procedure as a system state specification, the following framework 

proposes ∀ Sk, Se ∈  S, δ(Sk, Se): S × Se → R+, or in other words, the proximity ordering 

by metric distance, be used as a measure of the difference, or conceptual distance, 

between state Sk, and the desired end-state, Se, where S is the set of all possible system 

states.  By defining attributes, δαj ≈ αj, based on the system state specification, δ(Sk, Se) is 

a valid metric from both a Measure Theory and Measurement Theory perspective.  

However, as will be shown, assuming system state Sk characterizes the empirical system 

through two or more attributes, δ(Sk, Se) is actually a semimetric, or pseudo-metric, since 

any two states in S can be different across attributes, but have the same conceptual 
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distance to the reference state.  Thus, only atomic measures, δαj, are pure metrics in the 

mathematical sense. 

Clearly, under this framework, a system state (i.e. point) by itself has no 

measurement.  The concept of a difference, or conceptual distance, requires two states 

(i.e. the system state of interest, Sk, and a reference system state, such as the end-state, 

Se).  Thus, for a set of possible system states, S, the empirical relation system consists of 

a set of entities and their relations.  Comparison of all pairwise combinations of system 

states is denoted by S × S.  However, if the reference system state is Se, this reduces to S 

× Se, where each atomic attribute addresses a unique aspect (i.e. dimension) of system 

state difference.  Thus, the focus here is on the differences, or conceptual distances, 

between system states, and more importantly for effectiveness measurement, a relation 

expressing a total order on S × Se.  The empirical ordering relation for system states can 

be expressed as ≤S, where ≤S is a ternary relation mapping to the positive real numbers, 

R+.  Thus, δS:(S × Se, ≤S) → (R+, ≤) is a homomorphic mapping suggesting                  

∀Si, Sj, Se ∈ S ∋ (Si, Se) ≤S (Sj, Se) ⇔  δ(Si, Se) ≤ δ(Sj, Se), from which it follows          

δS:(S × Se, ≤S) is of at least ordinal scale type.  This useful result suggests, 

THEOREM 2:  Effectiveness measures require at least an ordinal scale 
type. 
 
PROOF:  For an ordinal scale effectiveness measure, δS:(S × Se, ≤S) → (R+, 
≤) implying δS has both equivalence and rank order meaning on S × Se.  
However, a nominal scale measure, μS:(S × Se, =S) → (R+, =), only has 
equivalence meaning over S × Se.  Thus, ∀ Si, Sj ∈  S, ((Si ≤S Sj) ∨ (Sj ≤S 
Si) (strongly complete)) and ∀ Si, Sj, Sk ∈  S, (((Si ≤S Sj) ∧ (Sj ≤S Sk)) ⇒  (Si 
≤S Sk)) (transitive or consistent)) cannot be discerned with μS, the nominal 
scale type measure. � 
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To further illustrate, let A be an empirical system with one element a, where the 

element has one attribute, α, measured by ά.  Thus, the model of A = xA = 〈 α 〉 ≈ 〈 μα 〉 

and S is the space of all possible assignments to μα.  Further, let St=0, the starting state, be 

xA = 〈 α 〉 ≈ 〈 Ø 〉 and Se, the desired end-state, be xA = 〈 α 〉 ≈ 〈 ψ 〉.  Additionally, let there 

be two actions, y and z.  At t = T, y results in xA = 〈 χ 〉 while z results in xA = 〈 φ 〉.  Which 

action, y or z, was more effective in terms of α?  THEOREM 2 asserts this question can 

not be answered for the nominal system state measure μS.  A key result following from 

THEOREM 2, in combination with the mathematical completeness implication of 

THEOREM 1, is (S × Se, ≤S) is of weak order.  It can further be shown however, δS not 

only has ordinal meaning, but has meaning on the ratio scale as well. 

THEOREM 3:  The effectiveness measure δS:(S × Se, ≤S) → (R+, ≤) is of 
ratio scale type. 
 
PROOF:  The admissible transformation for a ratio scale type measure is x 
→ rx, r ∈ R+.  Because Se is used as the second parameter in each pair for 
the ternary relation (i.e. (Si, Se) ≤S (Sj, Se)), Se acts as an absolute zero for 
δS.  Thus, ∀r ∈ R+, for the relation ∀Si, Sj, Se ∈ S ∋ (Si, Se) ≤S (Sj, Se) → 
rδS(Si, Se) ≤ rδS(Sj, Se) ⇒  δS(Si, Se) ≤ δS(Sj, Se). � 
 
To further illustrate, let A be an empirical system with one element a, where the 

element has one attribute α, measured by ά.  Thus, the model of A = xA = 〈 α 〉 ≈ 〈 δα 〉 and 

S is the space of all possible assignments to δα.  Further, let St=0, the starting state, be A = 

xA = 〈 α 〉 ≈ 〈 9 〉 and Se, the desired end-state be A = xA = 〈 α 〉 ≈ 〈 2 〉.  Let there be two 

actions, y and z.  At t = T, y results in xA = 〈 6 〉 while z results in xA = 〈 3 〉.  In this 

example, THEOREM 3 can be used to assert y is 50% less effective than z at α in 

achieving Se. 
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An obvious question is, why not use the starting state St=0, as the reference state 

versus Se?  The starting state does not represent an absolute zero for δS thus, coming into 

conflict with the non-negativity property of a metric (i.e. δS ≥ 0).  To illustrate, using the 

above example with starting state xA = 〈 α 〉 ≈ 〈 9 〉 and desired end-state xA = 〈 α 〉 ≈ 〈 2 〉, 

at t = T, let y result in xA = 〈 6 〉, which is clearly an improvement from St=0 since it is 

closer to Se.  However, suppose z results in xA = 〈 15 〉.  If the state change is measured 

from St=0, resulting in 9 - 15 = -6, the non-negativity property is violated.  Additionally, 

in an attempt to get around the non-negativity constraint, if the measure is referenced 

from t = T resulting in 15 - 9 = 6, while non-negative, it is now not comparable to the 

result from y.  The logic for using the end-state as a reference point is similar to that used 

in goal programming where outcomes are measured with respect to the desired goal 

(Deckro, 1988:152). 

THEOREM 1 asserts a general notion of effectiveness does not exist.  Clearly 

however, system attribute measures, δαj need to be mathematically combined to derive a 

single, scalar system effectiveness measure, δS.  Although a single scalar facilitates 

comparison of system states, whether this mathematical combination has empirical 

significance under the Representation Theorem in Measurement Theory is questionable.  

For example, suppose a set of boxes is of interest.  The specific attributes of interest are 

length, width, and height.  Instead of representing each box as a vector of length, width, 

and height, which would be a unique representation for each box, the product of the three 

is used.  The problem is the derived measure does not provide an isomorphic mapping 

from the empirical world to the formal structure (e.g. a box 40cm wide, 30cm long, and 

10cm high is the same as a box 20cm wide, 60cm long, and 10cm high). 
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To further illustrate, let δS(Si, Se) measure the conceptual distance from system 

state Si, to the desired end-state, Se.  Further, suppose ∀Si, Se ∈ S are characterized by 

〈α1,…, αm〉 ≈ 〈δα1,…, δαm〉.  Thus, the system effectiveness measure, or derived measure, 

could be represented as a combination of the individual system attributes measures as 

follows δS(Si, Se) = f( a1δα1(Siα1
, Seα1

), a2δα2(Siα2
, Seα2

), …, amδαm(Siαm
, Seαm

)), where     

∀i, 1 to m, δαi(Siαi
, Seαi

) is the difference, or conceptual distance, between system state Si 

and the desired end-state, Se, for a specific system attribute αi and ∀i, 1 to m, ai ∈ R+ are 

constants associated with δαi(Siαi
, Seαi

) indicating relevancy of the attribute.  It follows, 

THEOREM 4:  A derived effectiveness measure, δS(Si, Se), from a 
combination of individual effectiveness measures, δαi(Siαi

, Seαi
), is a 

semimetric, or pseudo metric. 
 
PROOF:  ∀Si, Sj, Sl, Se ∈ S and ∀δαk ∈ δS, δαk(Siαk

, Seαk
) ≥ 0 ⇒ δS(Si, Se) ≥ 

0.  Additionally, δαk(Siαk
, Sjαk

) = 0 ⇔ Siαk
 = Sjαk

.  However, for a derived 
effectiveness measure, δS(Si, Se), the following, ∀Si, Sj ∈ S, δS(Si, Sj) = 0 
⇔ Si = Sj, is not a true statement since ∀Si, Sj ∈ S, ∃Si, Sj ∋ δS(Si, Se) = 
δS(Sj, Se) where Si ≠ Sj.  Continuing, δαk(Siαk

, Sjαk
) = δαk(Sjαk

, Siαk
) ⇒ δS(Si, 

Sj) = δS(Sj, Si).  Finally, δαk(Siαk
, Sjαk

) ≤ δαk(Siαk
, Slαk

) + δαk(Slαk
, Sjαk

) ⇒ 
δS(Si, Sj) ≤ δS(Si, Sl) + δS(Sl, Sj).  It follows, (S, δS) is a metric space. � 
 

Within the formal system, it has been shown, the derived measure, δS(Si, Se), is a 

pseudo metric (THEOREM 4) that can be measured on a ratio scale (THEOREM 3).  

Although this makes δS(Si, Se) theoretically valid, there is no evidence to show it is 

empirically valid, or that it holds for the Representation Theorem in Measurement Theory 

(Poels, 1996:11).  The limiting factor is the measurement context or defining exactly 

what is to be learned from the act of measurement.  For example, continuing with the 

illustration using the boxes, if the ultimate aim was to compare the volume of the boxes, 
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the scalar representation does have empirical significance.  Thus, empirical validity of the 

scalar system representation comes via definition of the product structure, which is inline 

with the result of THEOREM 1.  Further, the derived effectiveness measure, δS(Si, Se), 

provides a basis as an overall system effectiveness measure. 

Previously, a metric, δ, was defined as a measure of distance that holds for the 

non-negativity, identity, symmetry, and triangle inequality properties.  Clearly, numerous 

measures of distance can be devised to hold for these properties.  For example, for a non-

empty set S, ∀x, y ∈ S, δ(x, y) = 0: if x = y, and δ(x, y) = 1: if x ≠ y is called the discrete 

metric (Apostol, 1974:61).  The most common metrics are derivative of the power, or 

Minkowski metric, which is δ = r
n

i

r
ii yx /1

1
)||(∑

=

− , where δ is a measure of distance 

between entities x and y each having n attributes and r ∈ R+ is an arbitrarily chosen value 

(Dillon, 1984:124).  To illustrate, with r = 1, ∀x, y ∈ Rn, δ(x, y) = | x1 – y1 | + … + | xn – 

yn | is the rectilinear distance, often called the ‘city-block’ distance (Love, 1988:5).  

However, in a mathematical sense, when discussing metric spaces, one typically is 

addressing Euclidean space, Rn, and the commonly used metric for Rn is the Euclidean 

metric (Suppes, 1989:32). 

To further elaborate, an ordered set of n > 0 real numbers, (x1, x2,…, xn), is called 

an n-dimensional point.  The number xk is called the kth coordinate of point x.  The set of 

all n-dimensional points is called n-dimensional Euclidean space, or n-space, and is 

denoted by Rn (Apostol, 1974:47).  Algebraic operations on n-dimensional points include 

a) equality: x = y ⇔ x1 = y1,…, xn = yn 
b) sum: x + y = (x1 + y1,…, xn + yn) 
c) multiplication by real numbers (scalars): ax = (ax1,…, axn) 
d) difference: x – y = x + (-1)y 
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e) origin or reference vector: 0 = (0,…, 0) 

f) inner product: x · y = ∑
=

n

i
iiyx

1
. 

A final operation on n-dimensional points is called length, or norm.  Although 

there are numerous types of norms (Nash, 1996:618), the Euclidean norm, denoted by     

|| x – y || and calculated as 2/1

1

2 ))((∑
=

−
n

i
ii yx , is the most common and is interpreted as the 

Euclidean distance between x and y (Apostol, 1974:48).  Clearly, the Euclidean norm is 

just the power metric with r = 2.  The Euclidean norm, as well as all power metrics, are 

based on four fundamental assumptions: 1) Decomposability – The distance between 

points, driven by system inputs, is a function of the componentwise contributions of those 

inputs, 2) Intradimensional Subtractivity – Each component contribution is the absolute 

value of an appropriate scale difference, 3) Interdimensional Additivity – The distance is 

a function of the sum of componentwise input contributions, and 4) Homogeneity – 

Affine (straight) lines are additive segments (Suppes, 1989:175).  Further, the Euclidean 

norm has the following additional properties (Ruckle, 1991:48): 

a) ∀x ∈ S, || x || = 0 ⇔ x = 0 (identity) 
b) ∀x ∈ S and ∀a ∈ F, the field of scalars, ||ax|| = | a | || x || (scalar homogeneity) 
c) ∀x, y ∈ S, || x + y || ≤ || x || + || y || (triangle inequality) 

For completeness, Rn, as described earlier, is a linear space.  A linear space, or 

vector space, over a field of R+, F, is a set S and two functions; one from S × S → S, 

denoted by +, and one from F × S → S, denoted by ·, which can be characterized by the 

following properties (Ruckle, 1991:31): 

a) ∀x, y, z ∈ S, x + ( y + z ) = ( x + y ) + z (associative for addition) 
b) ∀x, y ∈ S, x + y = y + x (commutative for addition) 
c) ∃ 0 ∈ S ∋ x + 0 = x ∈ S (unique identity) 
d) ∀x ∈ S, ∃ -x ∈ S ∋ x + (-x) = 0 (unique inverse) 
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e) ∀a, b ∈ F and ∀x ∈ S, a( bx ) = ( ab )x (associative for multiplication) 
f) ∀a, b ∈ F and ∀x ∈ S, (a + b ) x = ax + bx (right distributive) 
g) ∀a ∈ F and ∀x, y ∈ S, a( x + y ) = ax + ay (left distributive) 
h) ∀x ∈ S, 1x = x (multiplicative identity) 

Finally, the norm has the following properties on a vector space, or more 

precisely on a normed vector space, Rn (Apostol, 1974:48): 

a) || x || ≥ 0 (non-negativity) and || x || = 0 ⇔ x = 0 (identity) 
b) || ax || = | a | || x || ∀a ∈ R (scalar homogeneity) 
c) || x – y || = || y – x || (symmetry) 
d) | x · y | ≤ || x || || y || (triangle inequality for dot product) 
e) || x + y || ≤ || x || + || y || (triangle inequality for addition) 

Although the Euclidean norm serves as a robust and convenient way to aggregate 

measures, the units of the attributes will not likely be mathematically commensurate, or 

of the same magnitude in their initial form and thus, will require a transformation in order 

to be aggregated.  Comparison of system states relative to an end-state implies individual 

system attributes are aggregated to make an overall statement about the system.  

Aggregation presents a special problem for the proposed effectiveness measurement 

framework, since the measures will likely be in different units and have differing 

magnitudes.  Not addressing this issue of non-commensurate measures will result in a 

systemic error since combination of dissimilar measurements results in certain system 

attributes having a higher proportional weighting relative to other system attributes. 

This aggregation problem is not unique to the proposed framework and is usually 

handled via a normalization transformation before aggregation of the measurements.  In 

general, normalization is a mathematical transformation that maps from one scale to 

another, yielding a common scale.  Numerous normalization techniques exist that will 

make dissimilar measures commensurate for purposes of aggregation.  Some of these 

methods include percentage normalization and summation normalization (Tamiz, 
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1998:572).  The most common techniques, however, attempt to scale each attribute to a 

common scale of zero to one and go by names such as ‘zero-one’ (Tamiz, 1998:573) or 

‘Bowles’ (Zuse, 1998:232) normalization.  For example, the normalization technique 

most commonly used in the literature is δ’=
minmax

min

δδ
δδ
−
− , where δ is the value to be scaled 

and δmin and δmax are respectively the minimum and maximum values δ can be assigned 

where δmax - δmin ≠ 0 (Kirkwood, 1997:58).  Another technique often used when δmin and 

δmax are not known, but also produces a result from zero to one, can be calculated as δ’= 

a+2δ
δ , where a ∈ R+ is chosen arbitrarily large relative to δ. 

These normalization techniques are useful in making dissimilar scales 

commensurate for purposes of aggregation.  However, simply applying the 

transformation does not address all the issues.  One issue concerns the meaning (i.e. scale 

type) associated with the numbers before and after the normalization transformation.  

Most normalization techniques result in reduced meaning after the transformation.  

Specifically, ratio meaning is usually lost (Kirkwood, 1997:241; Zuse, 1998:232).  For 

example, let δ1= 17 and δ2= 13 be observations of metrics and thus of ratio scale type.  

The empirical relationship between these observations with ratio level meaning is 

30.1
13
17

2

1
==

δ
δ .  Assume δmin= 10 and δmax= 20.  Thus, δ1’= .7 and δ2’= .3.  Examining 

the empirical relationship after the normalization, 33.2
3.
7.

2

1
==

′
′

δ
δ ≠ 1.30, shows the ratio 

scale meaning was lost in the transformation. 
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Another issue involves the meaning of the measurements within a specific 

context.  For example, a decision maker needs to evaluate projects in a portfolio for 

possible termination.  Two projects are found that have exceeded their budgets by 

$1,000,000.  For the cost attribute, each program is a distance of $1,000,000 from their 

respective desired end-states.  However, let one of the programs have an original budget 

of $1,000,000 and the other have original budget of $200,000,000.  Even though in 

general, the two projects are an equal distance from their end-states, from the decision 

maker’s perspective, the interval distance from $1 million to $2 million likely has a 

different meaning from the interval distance from $200 million to $201 million.  Further, 

simply looking at the distance as a percentage of the end-state may not yield equivalent 

distances (Keeney, 1992:115).  It follows, the meaning (i.e. scale type) of numbers is 

context dependent (Kirkwood, 1997:241). 

THEOREM 3 asserted effectiveness measures, as defined within the proposed 

framework, have ratio level meaning.  A fundamental property of a ratio measure, 

building upon the properties of interval measures, is interval distances are equal (Stevens, 

1946:679).  From an applied standpoint, THEOREM 3, suggesting measures have ratio 

scale type in general, and the earlier statement about numerical meaning being context 

dependent, seems to be in conflict.  This suggests, to achieve ratio level meaning, models 

of some system attributes (i.e. measures) may require a scale transformation to convert 

empirical observations such that they yield scales with equal intervals.  For example, 

assume the following scenario: 

A specific system attribute is being monitored.  A measure for the attribute 
has been developed with a lower bound of zero.  Additionally, the desired 
end-state for the attribute has been defined as 10.  Further, for the specific 
context, it is known the following relationship exists: a system attribute 
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value above 10 is twice as desirable as a value below 10.  This implies an 
observed unit interval below 10 is equal to two observed unit intervals 
above 10. 
 
For this scenario, two key issues have to be addressed before the problem of 

normalization for this measure can be solved.  The first issue concerns the unequal unit 

intervals above and below the desired end-state (10).  Since the relationships between the 

intervals are known, this problem can be handled with a scale transformation.  For 

example, let XOBSERVED ∈ R ≥ 0, be the observed system attribute measure (Figure 9).  

Further, let XEQUAL ∈ R ≥ 0, be the equal interval transformation developed using the 

known relationship (Figure 10).  XEQUAL yields empirical observations with ratio level 

meaning.  Clearly, the relationship presented in the scenario will not be known in general 

but will have to be discovered.  This discovery process occurs by asking the decision 

maker, who will be making decisions based off the measurements, or subject matter 

experts on the system of interest, a series of lottery or certainty equivalent questions 

(Luce, 1957:21; Keeney, 1992:6) to identify indifference curves (Keeney, 1992:79; 

Clemen, 1996:540).  This topic of achieving equal intervals is related to the concept of 

differentially value equivalence (Keeney, 1993:94) and is just an extension of the 

substitutability axiom of expected utility (Clemen, 1996:504). 

The second issue concerns the non-monotinicity as a function of the observed 

values.  Non-monotinicity suggests benefits or utility is not an increasing (or decreasing) 

function of observed values (i.e. if more is good, a lot more may not necessarily be 

better).  The above scenario, even after adjusting for equal intervals, is non-monotinic 

since desirability of the system attribute is increasing from 0 to 10 and decreasing from 

10 to ∞+.  However, the benefits or utility is not relative to the scale origin (0), but 
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relative to the end-state (10), or more specifically the distance to the end-state.  Measures 

of distance (i.e. metrics) are always monotonic (Apostol, 1974:60).  This implies, all else 

being equal for the above scenario, a decision maker would be indifferent between 

system attribute values of 5 and 20, on the XOBSERVED scale, since they are the same equal 

interval distance from the desired end-state based on known empirical relationships. 

These examples concerning budget overruns only looked at a single attribute 

(cost).  However, when looking at multiple attributes simultaneously, or in other words, a 

derived effectiveness measure, THEOREM 4 suggested the distance from a system state to 

the desired end-state was not unique to the state (i.e. a semi-metric).  In light of 

THEOREM 4 and the preceding discussion, it follows, strategically equivalent system 

states are equidistant from the desired end-state. 

 

 

 

 

 

Figure 9.  Observed System Attribute Assignments 
 

 

 

 

 

Figure 10.  Observed After Equal Interval Transformation 
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A desirable characteristic of a normalization transformation is to preserve the 

scale meaning of the input values.  Under the proposed effectiveness measurement 

framework, THEOREM 3 asserted effectiveness measures have ratio scale meaning.  The 

only allowable transformation that preserves ratio level information is multiplication by a 

scalar, x → rx, r ∈ R+.  A logical normalization approach, given the proposed 

framework, which adheres to this transformation, is to normalize the (equal interval) 

distance from the end-state with respect to the end-state (XDESIRED).  Following 

development of a system attribute measure, rules for such a normalization approach are 

outlined in Figure 11.  A detailed example illustrating implementation of the technique on 

notional data is provided in Appendix B. 

 

 

 

 

Figure 11.  Ratio Preserving Normalization 

This proposed deterministic Theory of Effectiveness Measurement can be 

summarized as follows (Figure 12).  Starting with the system state specification, or 

product structure, the system of interest is identified and, in particular, the system 

boundary is delineated.  Continuing with the specification, the system model is developed 

to include all pertinent dimensions of the system.  This is required, because as asserted in 

THEOREM 1, there is no general notion system effectiveness.  Further, a key aspect 

required for the system model is for all developed measures to hold for the properties of a 

1. Identify the desired end-state
2. Establish certainty equivalent transformation
3. Calculate distance from current system state 

to desired end-state
4. Normalize distance with respect to the end-

state using a ratio preserving transformation
5. Update previous observations using latest 

normalization constant (kj)

XDESIRED
XOBSERVED → XEQUAL
XDISTANCE = | XEQUAL – XDESIRED |

XNORMALIZED = kjXDISTANCE

kj = 
∑
=

j

i 1
XDISTANCE

1
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metric (i.e. non-negativity, identity, symmetry, and the triangle inequality).  This step is 

not always straight forward, since meaning (i.e. scale type) is context dependent. 

It follows, an instantiation of all system measures is an observation, or 

measurement, of the system yielding the system state.  A crucial philosophical view, used 

in the theory presented here, is a change from one possible system state to another 

possible system state is an effect.  By representing a system state as an n-dimensional 

vector, corresponding to each of the relevant system attributes (i.e. dimensions), the space 

of these points serves as the space of all possible system consequences.  Clearly, each 

system dimension is a metric space via the definition of the product structure.  However, 

as asserted in THEOREM 4, the space of all possible system states is also a metric space 

from which it follows, system states equidistance from the desired end-state are 

strategically equivalent.  Further, a key result from THEOREM 1 is that the space of all 

possible system states is strongly complete.  Continuing, it follows from THEOREM 2, via 

the triangle inequality, the system state space is transitive.  Combination of the 

transitivity and strongly complete properties yield another property, namely the weak 

order property.  The significance of this derived property is that the state space being a 

metric space along with having weak ordering are sufficient conditions for the system 

state space to be a proximity structure (Suppes, 1989:162). 

The state space being a proximity structure introduces the properties of positivity, 

minimality, and symmetry which are essentially reflections of the metric properties.  

These, along with weak ordering, allow for quaternary relations on the proximity 

structure (i.e. (Si, Sk) ≤S (Sj, Sm)).  Under the proposed framework, however, the 

quaternary relations reduce to ternary relations since each side of the relation has a 
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common parameter (i.e. the desired end-state, Se, yielding (Si, Se) ≤S (Sj, Se)).  Finally, 

THEOREM 3 suggests the state space is of ratio scale type allowing for meaningful 

comparison of inputs yielding system state changes (i.e. δS:(S × Se, ≤S) → (R+, ≤)). 

The deterministic framework provides a set of necessary and sufficient conditions 

for conducting effectiveness measurement.  However, by virtue of being ‘deterministic’, 

implied is the assumption of perfect information (i.e. what was seen is what actually 

happened).  Clearly, application of measurement in any domain needs to address error 

and uncertainty, where uncertainty relates to the amount of knowledge available 

concerning a system attribute and error is the deviation of a system attribute measurement 

from the true, but unknown, value (Weise, 1992:1). 

PROBABILISTIC FRAMEWORK 

Error and uncertainty, as noted earlier, manifests itself in three forms to include 

observational, systemic, and random.  With respect to the proposed effectiveness 

measurement framework, these forms, and their impact, are exemplified in Figure 13.  In 

Figure 13, observational error is illustrated as germane system attributes not being 

identified.  These missing attributes, in turn, do not appear in the system measurement 

model or the system vector representation.  Additionally, random error is shown as an 

interval around a measured value in the system state estimate, x*A.  Further, systemic 

error is portrayed as a shifted, or biased, interval around the observed value.  Finally, 

Figure 13 displays the impact of these errors as an overall, unperceived error between the 

actual and observed system state.  Thus, to address these errors and complement the 

deterministic framework, a probabilistic framework is needed for reasoning about these 

types of error and uncertainty while conducting effectiveness measurement. 



 

 

83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Framework Summary 
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Numerous probabilistic reasoning frameworks exist.  These frameworks are 

essentially tools to address uncertainty and error in particular types of problems.  Thus, 

what follows is a brief overview of some probabilistic reasoning techniques to identify a 

preferred approach to support the proposed deterministic effectiveness measurement 

framework. 

In the application of measurement, it is unlikely everything about a domain of 

interest will be known.  Because of this, it is not even possible to precisely quantify what 

is unknown.  To get around this problem, Probability Theory can be used to generalize 

the unknown by assigning a degree of belief, or probability, to what is known (Weise, 

1992:2).  Additionally, domain knowledge consists of known truths about the domain of 

interest (Grassmann, 1996:60).  It should be noted, however, ‘degree of belief’ is not the 

same as ‘degree of truth’ which is the realm of fuzzy logic (Russell, 2003:464).  

Assigning a degree of belief to a measurement implies an underlying distribution 

associated with all possible instantiations of the measure across the universe of discourse 

for the measure (Russell, 2003:469).  The assignment can be based on different 

philosophical views concerning probability including empirical evidence (frequentist), 

proven theoretical assertions (objectivist), or a characterization without physical 

significance (subjectivist) (Russell, 2003:472).  Regardless of how they are derived, these 

assignments form the basis for most probabilistic inference techniques. 

One of these techniques is based on Dempster-Shafer Theory (DST).  DST is 

closely aligned with the frequentist view in that, instead of computing the likelihood of 

an event based on theoretical hypotheses or expert opinion, DST derives probabilities  
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Figure 13.  Error and Uncertainty in Effectiveness Measurement 
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based on measurements, or evidence, supporting a particular assertion about the domain 

of interest.  This point suggests DST may be a good alternative for developing the 

probabilistic portion of an effectiveness measurement framework.  However, many 

aspects of DST are not well understood and require further research (Russell, 2003:526). 

Another probabilistic reasoning approach is based on Fuzzy Set Theory.  Fuzzy 

Set Theory provides a means for specifying how well a system attribute meets the criteria 

of a given specification (Russell, 2003:526).  A key feature of Fuzzy Set Theory lending 

itself for use in a measurement framework is its ability to handle qualitative, real-world 

observations without the need for precise system attribute quantification.  However, this 

benefit is offset by representation problems of qualitative observations given subjective 

classification criteria (Russell, 2003:527).  Additionally, as noted above, Fuzzy Set 

Theory is based on degrees of truth versus degrees of belief.  From a real-world decision 

making point of view, this can lead to interpretation problems.  For example, in Fuzzy Set 

Theory, the answer to the question, “Are we winning or losing?” is always, “both”. 

One inference framework closely aligned with the above deterministic 

effectiveness measurement framework, is known as filtering.  Filtering uses system state 

representation in the form of vectors and is often used where the internal behavior of a 

system cannot be observed or is not known and must be inferred from the system’s 

external behavior (Maybeck, 1979:4; Welch, 2004:1).  In practice, filtering is the task of 

computing the current state of a system in the face of uncertainty as well as partial and 

noisy measurements (Zarchan, 2005:91).  Mathematically, filtering is a recursive 

estimation technique and takes the form (Russell, 2003:541): 

 P( x̂ k | x*) = f(x*
k, P( x̂ k-1 | x*)) ( 8 ) 
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In other words, an estimate of the state of the system at the kth measurement, x̂ k, given all 

measurements of the system, x*, is a function, f, of the latest measurement, xk
*, and the 

previous system state estimate, P( x̂ k-1 | x*).  Thus, even if the system of interest is not 

tangible, such as the collective will of a group of people, via filtering we could use 

existing measurements to estimate the current state of the system. 

A popular filter for trying to estimate the state of a system based on uncertain and 

error prone measurements is known as the Kalman filter, first presented by Rudolf E. 

Kalman in 1960 (Kalman, 1960).  The Kalman filter can take ‘noisy’ measurements and 

estimate the state of any system (Maybeck, 1979:4).  A key assumption of the Kalman 

filter is the current system state estimate, x̂ k, is a linear function of the previous state 

estimate, x̂ k-1, plus some Gaussian noise (Maybeck, 1979:7).  This is a reasonable 

assumption under the Central Limit Theorem.  Specifically, as the number of 

measurements increases, the distribution tends to be Gaussian.  Additionally, for the 

likely case of tracking numerous system attributes, the sum of independent random 

variables, regardless of individual density function, tends toward Gaussian as the number 

of random variables gets larger (Maybeck, 1979:8).  In relation to mathematical 

techniques, the Kalman filter is essentially a Bayesian estimator that uses all available 

measurements, and their covariance, to arrive at a system state estimate (Maybeck, 

1979:114). 

Application of the Kalman filter assumes the system of interest can be described 

by a set of differential equations.  Additionally, the equations must be in state-space 

notation.  State-space notation implies any set of linear differential equations can be put 

into the form of the first-order matrix equation: 
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 x̂  = Fx + Gu + w ( 9 ) 

where x is the system state vector, F is the system dynamics matrix, u is a deterministic 

input called a control vector, and w is a random forcing function, which is also known as 

process noise (Zarchan, 2005:33).  It should be noted, G captures the relationships 

between the controls, u, and the system states.  However, since these relationships are 

commonly unknown, many Kalman filtering implementations set G to 0 (Zarchan, 

2005:131). 

In order for the above matrix differential equation to be used as a filter, it must be 

discretized, with measurements taken at a periodicity of Ts.  This is achieved by deriving 

a fundamental matrix, Φ, via the system dynamics matrix, F, using the following 

relationship Φ = L-1 [(sI – F)-1], where L-1 is the inverse Laplace transform and I is the 

identity matrix.  In general, the solution to Φ for a n-1 order filter is (Grewal, 1993:37): 
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Additionally, Kalman filtering assumes measurements are linearly related to the 

system states via a measurement matrix H along with an associated measurement noise v.  

Finally, constants K, also called Kalman gains, are needed to express the relationship 

between the new measurement and the current estimate.  However, to calculate the gains, 
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the errors in the state estimates before and after the most recent system measurement 

must be taken into account.  This is accomplished using a covariance matrix, Mk, 

representing the error before the measurement and a covariance matrix, Pk, representing 

the error after the measurement in the following set of recursive matrix equations 

(Grewal, 1993:112): 

 Mk = ΦkPk-1Φk
T + Qk 

 Kk = MkHT(HMkHT + Rk)-1 ( 11 ) 

 Pk = (I – KkH)Mk 

It should be noted, Qk and Rk relate to the process noise, w, and the measurement noise, v, 

respectively; specifically, through the following relationships: 

Q = E[wwT] 

  ( 12 ) 

 R = E[vvT] 

Together, the above elements yield the Kalman filter equation (Zarchan, 2005:131): 

 x̂ k = Φk x̂ k-1 + Kk(xk
* - HΦk x̂ k-1) ( 13 ) 

A key strength of the Kalman filter is there are no parameters requiring tuning for 

a particular problem.  However, the order of the Kalman filter should fit the order of the 

real-world system, which is typically not known.  The tradeoff is lower order filters are 

better at reducing measurement noise error in an estimate; however, lower order filters 

can also result in significant truncation error, a form of systemic error (Zarchan, 

2005:127).  For example, assume an unknown, system attribute behavior is actually a sine 

wave.  A sine wave will be used since it is a familiar signal, but it also provides a 

challenging, nonlinear behavior to estimate with a Kalman filter.  Additionally, for 
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purposes of illustration, assume there is up to twenty-five percent ‘noise’ in the 

measurements, on which system estimates will be based. 

 

 

 

 

 

 

 

 

Figure 14.  0th Order Kalman Filter Estimate of a Sine Wave 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.  1st Order Kalman Filter Estimate of a Sine Wave 
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is used.  As can be seen in Figure 15, the 1st order filter does better at tracking the 

underlying system behavior, but significantly lags the actual behavior.  As a final attempt 

to estimate the behavior, a 2nd order filter is used.  The results are shown in Figure 16, in 

which the filter estimates the unknown behavior accurately through the first half off the 

sine wave.  In the second half, however, the 2nd order filter tracks the underlying behavior 

trend, but with a significant divergence from the true values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.  2nd Order Kalman Filter Estimate of a Sine Wave 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  Fading Memory 2nd Order Kalman Filter Estimate of a Sine Wave 
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One approach to dealing with this divergence is called ‘fading memory’ 

(Maybeck, 1982:28).  In the fading memory technique, only the most recent 

measurements are used to estimate the system state.  The impact of this approach using 

an arbitrarily selected 90-period memory is shown in Figure 17.  While Figure 17 shows 

a very close correlation between actual system behavior and the estimate, it should be 

noted, the need for the fading memory technique to address the estimate divergence from 

the actual system behavior, was driven because the actual system behavior was known to 

be a sine wave. 

Since the true states of a system will not likely be available to validate a filter, a 

conservative approach is to use a second-order filter which is equivalent of keeping track 

of the position, velocity, and acceleration of system attribute movements.  Thus, the 

matrix form of a second-order Kalman filter for a single system attribute, x, is: 
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An intuitive feature of the Kalman filter is errors in the estimates decrease as the 

number of measurements taken increases (Zarchan, 2005:148).  It follows from this 

result, process noise can be assumed to be zero as more measurements are taken, which 

simplifies and allows for off-line calculation of the Kalman gains, K (Zarchan, 

2005:156).  A detailed example illustrating use of the second-order Kalman filter appears 

in Appendix C. 

Finally, it should be emphasized, the above linear filter will be used to estimate 

the state of what is likely a non-linear, real world system.  However, even if a model of 
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the non-linear system was available, the above, basic linear filter is very robust and 

performs just as well as various non-linear Kalman filter variants, especially when the 

true underlying nature of the system is unknown (Zarchan, 2005:291, 329).  Regardless, 

real-world non-linearity does reduce system state estimate accuracy as illustrated in 

Figure 16.  This problem can best be addressed by increasing the periodicity, Ts, at which 

measurements are taken (Zarchan, 2005:291, 677).  In other words, the more 

measurements one takes, the more accurate the estimate.  For example, Figure 18 

displays the result of estimating the sine wave based on the same measurements shown in 

Figure 16, but using Ts = 3.  versus Ts = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.  Impact of Increased Sample Rate on Sine Wave Estimate 
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section is to demonstrate the practical nature of the frameworks by implementing them on 

a simple, but realistic scenario. 

A number of approaches are available to highlight the usefulness of the proposed 

theory.  One of the alternatives explored included implementing the frameworks in a 

generic scenario using a simple, toy model developed using system dynamics or causal 

analysis techniques.  While the simplicity would have provided transparency, the generic 

nature of the approach did not provide a level of realism likely required to which a 

practitioner could relate. 

Another alternative examined was to use data collected on a historical battle.  

Numerous data sets exist such as those used in proving the theoretical assertions 

contained in The War Trap (Bueno de Mesquita, 1981).  Unfortunately, most available 

datasets, as in The War Trap, only provide visibility on the starting state and the end-

state, with no insight on events traversed between the two states.  However, a few 

datasets do contain this level of fidelity.  Highly detailed and comprehensive datasets on 

the World War II Battles of Kursk and Ardennes are available from the United States 

National Technical Information Service.  While these datasets do provide time series data 

between the starting state and the end-state for individual units, the datasets are attrition 

oriented detailing only the unit location and strength level for each day of the respective 

battles.  There is no insight into the cause for certain movements or declines in force 

strength. 

A final alternative investigated, and ultimately used, for illustrating use of the 

frameworks, was to employ a high fidelity model depicting a realistic scenario.  

Numerous high fidelity models exist for the purposes of analysis and wargamming.  
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However, many of these models, such as the THUNDER campaign level warfare model 

and the Combat Forces Assessment Model (CFAM), are attrition oriented which is not in 

alignment with the tenets of EBO.  One model though, specifically developed to support 

the concepts behind EBO is called Point of Attack 2 (POA2). 

POA2 is a comprehensive and detailed, modern, tactical level, combat simulator 

that depicts engagements at the platoon and individual vehicle level, along with complete 

characterization of supporting artillery, air strikes, electronic warfare, engineering, 

chemical warfare, helicopter, naval, and psychological operations units (HPS, 2006).  

POA2 was designed to model the capabilities and effects of conventional weapons as 

well as developing technologies.  POA2 was developed by HPS Simulations via funding 

from the Plasma Physics Program of the US Air Force Office of Scientific Research.  The 

focus of the development effort was to create a state-of-the-art strategy wargame 

specifically designed to capture the effects of non-traditional weapons such as a high 

powered microwave (AFOSR, 2001). 

While using an effects oriented model, such as POA2, was a necessary condition 

for demonstrating the theory, another critical factor was the scenario to be portrayed.  Of 

key importance was finding a scenario that would highlight the strengths and limitations 

of the proposed theory.  An additional characteristic was finding a scenario that would 

resonate with the practitioner.  POA2 comes with several preprogrammed scenarios.  One 

of these scenarios was selected and modified, as illustrated in what follows, for the 

purposes of demonstrating the frameworks.  The scenario, involving a terrorist attack on 

a Continental United States Air Force Base, is highlighted here: 

Extremist attempt to breach a southwestern United States airfield with 
truck bombs and car bombs in an effort to destroy aircraft near a runway 
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as well as blowup a fuel depot.  Additionally, using the truck/car bomb 
explosions as cover, extremist squads in off-road vehicles, try to infiltrate 
laboratories developing critical, near ready to be fielded technologies to 
support the Global War on Terror, in an effort to steal the technologies, 
destroy the laboratories supporting the technologies, and kill the people 
creating them.  Base security forces, unaware of the impending attack, 
respond. 
 
The base security forces (BLUE forces) are composed of the following objects, 

using the default characteristics and properties, as defined in the POA2 software: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  Scenario Details 
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    3 x Laboratory (Large Masonry Building) 
195 x Civilian 
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    2 x Truck Bomber 
    3 x Car Bomber 
    3 x Off-road Vehicle (CUCV 4 x 4) 
    9 x Terrorist (Infantry (R)) 

Details of the scenario are illustrated in Figure 19.  Specifically, the fighters (◊) 

and the bombers (◘) are parked in the open, but are guarded by military police in armored 

vehicles (×).  Additionally, military police in armored vehicles (×) are positioned near the 

major base entry gates.  These gates are the entry points for the truck and car bombers 

(◙).  While the fighters (◊) and the bombers (◘) are key targets for the truck and car 

bombers (◙), destruction of the fuel depot (□) is another target of the extremists.  The 

paths to be traversed by the truck and car bombers (◙) to the fighters (◊), bombers (◘), 

and the fuel depot (□) are indicated by the arrows (→).  The base security forces are 

controlled centrally through the command post (*), which can result in delays in the 

receipt and distribution of intelligence information as well as delays in the transmission 

of updated orders.  While the extremists would consider completed attacks on the fighters 

(◊), bombers (◘), and the fuel depot (□) a victory, their true intent is to obtain advanced 

technologies being developed in laboratories (■) on the base.  Terrorists in off-road 

vehicles (○) will traverse the paths indicated by the arrows (→) across the base to the 

laboratories (■) to obtain the technologies and if successful, use the same paths (→) to 

egress.  The side of the base with the laboratories is also patrolled by military police in 

armored vehicles (×).  Finally, scattered throughout the base are government civilian 

workers (+) that are potentially in harms way. 

As noted, the base security forces are unaware of the impending attack.  Despite 

being in the position of responding as events unfold, the base security forces can develop 

a desired end-state to focus actions.  The end-state would be a function of what is valued 
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as explained under the deterministic framework.  For this scenario, the base security 

forces’ notional desired end-state is illustrated in Figure 20.  Specifically, the three 

primary objectives in the notional end-state are to secure the base, remain fully mission 

capable, and secure advanced technologies.  Additionally, the ‘secure the base’ objective 

can be further broken down into the sub-objectives: all base sectors searched, all 

units/individuals identified, and all discovered terrorists captured/killed.  In a similar 

manner, the ‘remain fully mission capable’ objective is composed of the sub-objectives: 

no personnel losses (both military and civilian), no equipment losses, and no 

infrastructure losses.  Finally, the ‘secure advanced technologies’ objective, is made up of 

the sub-objectives: all base sectors searched for technologies and all stolen technologies 

recovered/destroyed.  To complete the end-state characterization requires quantifying 

priorities among the objectives.  This is done by assigning weights to the objectives.  For 

this notional scenario, the weightings depicted in Figure 20 are used. 

 

 

 

 

 

 

 

 

 

Figure 20.  Base Security Forces End-State Characterization 
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As noted under the deterministic framework, a key aspect of the proposed 

methodology is being able to quantify abstract concepts.  This is accomplished by 

identifying what is important and continuing to ask ‘why it is important’ until the concept 

cannot be further refined.  This reductionist approach assisted in yielding the end-state 

characterization shown in Figure 20.  However, in addition to breaking down abstract 

concepts, this methodology also simplifies the task of identifying attributes and their 

measures.  Refinement of concepts to this fundamental level often yields natural and 

direct measures (Sink, 1985:86).  This outcome can be seen in Table 5.  Finally, on an 

Intel® Pentium 4® 3GHz based computer with 1GB of RAM, the scenario requires 

approximately 2½ hours to reach completion, which occurs when either RED escapes or 

is captured/killed.  The significant scenario events occurring over the twenty-five minutes 

of simulated time are outlined in Table 6.  The resulting twenty-five minutes generated 

the observations, at one minute intervals, shown in Table 7. 

Table 5.  Attributes and Measures Characterizing BLUE End-State 
Objective Value Attribute Measure

All base sectors 
searched for terrorists Sectors searched Number of sectors searched out of 11 total.

All individuals/units 
identified

Individuals/units 
identified

Number of individuals/units positively identified.  The total number 
changes as the scenario progresses, but begins with the total 
military and civilian base population (30 + 195).

All discovered terrorists 
captured/killed Terrorists captured/killed

Number of positively identified terrorists captured/killed.  The total 
number changes as the scenario progresses but begins at 0.  
Note: For this scenario, the number could be as high as 14 (9 
terrorists + 3 car bombers + 2 truck bombers).

Military losses Number of military losses out of a potential total of 30.
Civilian losses Number of civilian losses out of a potential total of 195.

Aircraft losses Number of aircraft losses out of a potential total of 10 (4 bombers 
+ 4 fighters).

Security vehicle losses Number of security vehicles losses out of a potential total of 10.

No infrastructure losses Infrastructure losses Number of infrastructure losses out of a potential total of 5 (3 
laboratories + 1 fuel depot + 1 command post).

All base sectors 
searched for 
technologies

Sectors searched Number of sectors searched out of 11 total.

All stolen technologies 
recovered/destroyed

Technologies 
recovered/destroyed

Number of technologies recovered/destroyed.  The number 
changes as the scenario progresses but starts at 0 and can be as 
high as 3.

No personnel losses

No equipment losses

BLUE     
End-State

Base Secured

Fully Mission 
Capable

Critical Technologies 
Secured

 

Table 7 represents the raw observations for each of the system attributes of 

interest.  However, an inescapable feature of measurement is error and uncertainty 
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(Mitchell, 2003:301; Finkelstein, 2003:45).  If the constraints of normality and linearity 

across errors are assumed, when combined with domain knowledge, a Kalman filter can 

be used to mitigate the impact of this error and uncertainty.  The raw observations in 

Table 7 transformed through use of a 2nd order Kalman filter (Ts = 1), along with domain 

knowledge about the environment, are shown in Table 8. 

One of the underlying themes of this research is that effectiveness is a relative 

concept.  Thus, in order to measure effectiveness, a reference point is required.  Under 

the framework being presented, the reference point is associated with the desired-end 

state.  The reference point for each of the attributes of interest in this scenario is shown 

along with the filtered observations in Table 9. 

Table 6.  Scenario Significant Events 
Time Period Significant Events

1 - Terrorists commence with attack plan
- Base security forces encounter terrorists
- Base security forces begin search for terrorists
- Base security forces start friend/foe identification
- Base security forces kill a truck bomber
- Base security forces kill a car bomber

9 - Base security forces kill a car bomber
10 - Base security forces kill a truck bomber
11 - Base security forces kill a car bomber
12 - Base security forces first encounter terrorist squads in off-road vehicles
13 - Base security forces kill 1 terrorist squad in an off-road vehicle

- Base security forces sustain first losses
- Terrorists steal critical technology from a laboratory
- One base security vehicle destroyed by terrorists
- Base security forces kill 1 terrorist squad in an off-road vehicle
- Base security forces complete search of all sectors for terrorists
- All friendly forces accounted for
- Terrorists destroy 1 laboratory
- First civilian losses

19 - Base security forces complete search for critical technlogies
24 - Base security forces recover stolen critical technology
25 - All identified terrorists killed

17

4

8

16

15

 

Continuing, this research generically defined effectiveness as an attribute distance 

change relative to the desired end-state for the attribute.  These distances are shown in 
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Table 10.  While these distances allow for comparison across time periods for a given 

system attribute, more meaningful insight on progress towards the desired end-state is 

provided by comparing across system attributes.  To obtain this type of insight requires 

normalizing the attribute observations.  Although numerous normalization techniques 

exist, many do not preserve the scale meaning of the original observation (Kirkwood, 

1997:241; Zuse, 1998:232).  One technique that does preserve the scale meaning of the 

original observations is outlined in Figure 11.  The algorithm in Figure 11 was used to 

transform the distances in Table 10 to the normalized distances shown in Table 11.  

Finally, the normalized distances can be combined to provide a single system 

effectiveness measure by multiplying the normalized attribute distances by the associated 

attribute weighting (Figure 20), which yields the results in Table 12. 

These steps complete implementation of the frameworks developed in this 

research.  However, display of the resulting information is also important.  Although not 

a focus of this research effort, visualization of quantitative data is crucial in supporting 

decision-making based on effectiveness measures (Tufte, 1997:9).  For the scenario 

results, three possible alternatives to visualize the data in Table 12 are shown in Figure 

21, Figure 22, and the twenty-five figures of Appendix D. 

These types of visualization techniques more clearly and readily communicate 

important system changes to the decision maker.  For example, the bar charts in 

Appendix D provide time independent views of the system (scenario) at one minute 

intervals for the duration of the scenario.  The charts not only highlight the significant 

events as delineated in Table 6, but more importantly portray the effect of those events 
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relative to the desired end-state.  Further, because of the mathematical concepts built into 

the proposed theory, the magnitude of the effect, or the effectiveness, can be assessed. 

When the information contained in the bar charts is consolidated into a single 

view, additional insights can be gleaned as illustrated in Figure 21.  The consolidation 

removes the time independence constraint and provides the decision maker a historical 

perspective on the effect and effectiveness of system (scenario) events over time.  

Further, Figure 21 not only indicates how individual system attributes are changing over 

time, but the last row in Figure 21 incorporates the attribute priorities, identified in Figure 

20, to provide an overall system effectiveness assessment. 

Another approach to viewing the information in Figure 21 is shown in Figure 22.  

The line chart view of Figure 22 also shows the overall system effectiveness assessment, 

but instead of going down to the attribute level, Figure 22 portrays the data only down to 

the primary objective level.  Collectively, these three alternative views illustrate how the 

decision maker can control the granularity of the effectiveness measurements to best 

support decision making. 

The overall effectiveness measurement process used for this notional scenario is 

illustrated in Figure 23.  Comparing Figure 23 to Figure 1 highlights how the elements 

developed in this research build upon the established, basic measurement concepts.  The 

overall process starts with the product structure, or measurement model, presented earlier.  

Embedded within the product structure process is the development of measures.  If the 

developed measures hold for the metric properties, then the theoretical assertions  
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Table 7.  Scenario Observations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sectors Searched 
for Terrorists 0 0 0 0 4 4 4 4 5 6 6 7 8 9 10 10 11 11 11 11 11 11 11 11 11

Individuals 
Identified 
(Red/Blue)

0    
–    
0  

0    
–    
0

0    
–    
0   

0    
–    
0

3    
– 

107

3    
– 

107

4    
– 

107

4    
– 

108

5    
– 

128

5    
– 

149

6    
– 

149

7    
– 

168

8    
– 

181

9    
– 

200

10   
– 

219

11   
– 

219

12   
– 

227

12   
– 

227

13   
– 

227

13   
– 

227

13   
– 

227

13   
– 

227

13   
– 

227

13   
– 

227

14   
– 

227

Terrorists 
Captured / Killed 0 0 0 0 0 0 0 2 3 4 5 5 8 8 8 11 11 11 11 11 11 11 11 13 14

Military Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3

Civilian Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 20 20 20 20 20 20 20

Aircraft Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Security Vehicle 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Infrastructure 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Sectors Searched 
for Technologies 0 0 0 0 0 0 0 0 0 0 0 4 5 6 7 8 9 10 11 11 11 11 11 11 11

Technologies 
Recovered / 
Destroyed

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Time PeriodsAttributes
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Table 8.  Kalman Filtered Observations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sectors Searched 
for Terrorists 0 0 0 0 4 5 5 5 5 6 6 7 8 9 10 10 11 11 11 11 11 11 11 11 11

Individuals 
Identified 
(Red/Blue)

0  
–  
0  

0  
–  
0

0  
–  
0  

0  
–  
0

3    
–  

95

3    
– 

122

4    
– 

127

5    
– 

126

5    
– 

134

5    
– 

149

6    
– 

155

7    
– 

166

8    
– 

178

9    
– 

193

10   
– 

210

11   
– 

220

12   
– 

225

13   
– 

225

13   
– 

225

14   
– 

225

14   
– 

225

14   
– 

225

14   
– 

225

14   
– 

225

14   
– 

225

Terrorists 
Captured / Killed 0 0 0 0 0 0 0 1 3 4 5 6 8 9 9 11 12 12 13 13 13 13 13 13 14

Military Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 4 4 4 4 4 4

Civilian Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 14 19 21 23 25 26 26 26

Aircraft Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Security Vehicle 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Infrastructure 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Sectors Searched 
for Technologies 0 0 0 0 0 0 0 0 0 0 0 2 4 6 7 8 10 11 11 11 11 11 11 11 11

Technologies 
Recovered / 
Destroyed

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Time PeriodsAttributes
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Table 9.  Filtered Observations with Reference 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sectors Searched 
for Terrorists

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

4   
–  

11

5   
–  
11

5   
–  

11

5   
–  
11

5   
–  
11

6   
–  

11

6   
–  
11

7   
–  
11

8   
–  

11

9   
–  
11

10  
–  

11

10  
–  

11

11  
–  
11

11  
–  

11

11  
–  

11

11  
–  
11

11  
–  

11

11  
–  
11

11  
–  
11

11  
–  

11

11  
–  
11

Individuals / Units 
Identified

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

98  
– 

228

125 
– 

228

131 
– 

229

131 
– 

230

139 
– 

230

154 
– 

230

161 
– 

231

173 
– 

232

186 
– 

233

202 
– 

234

220 
– 

235

231 
– 

236

237 
– 

237

238 
– 

238

238 
– 

238

239 
– 

239

239 
– 

239

239 
– 

239

239 
– 

239

239 
– 

239

239 
– 

239

Terrorists 
Captured / Killed

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
3

0   
–   
3

0   
–   
4

1   
–   
5

3   
–   
5

4   
–   
5

5   
–   
6

6   
–   
7

8   
–   
8

9   
–   
9

9   
–   

10

11  
–   

11

12  
–   
12

12  
–   

13

13  
–   

13

13  
–   
14

13  
–   

14

13  
–   
14

13  
–   
14

14  
–   

14

14  
–   
14

Military Losses
0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–  

30

0   
–  
30

0   
–  

30

0   
–  
30

0   
–  
30

0   
–  

30

0   
–  
30

0   
–  
30

0   
–  

30

0   
–  
30

0   
–  

30

1   
–  

30

2   
–  
30

3   
–  

30

3   
–  

30

4   
–  
30

4   
–  

30

4   
–  
30

4   
–  
30

4   
–  

30

4   
–  
30

Civilian Losses
0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

0   
– 

195

8   
– 

195

14  
– 

195

19  
– 

195

21  
– 

195

23  
– 

195

25  
– 

195

26  
– 

195

26  
– 

195

26  
– 

195

Aircraft Losses
0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–  

10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  

10

0   
–  

10

0   
–  
10

0   
–  

10

0   
–  

10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  
10

0   
–  

10

0   
–  
10

Security Vehicle 
Losses

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–  

10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  
10

0   
–  

10

0   
–  
10

0   
–  

10

0   
–  

10

1   
–  
10

1   
–  

10

1   
–  

10

1   
–  
10

1   
–  

10

1   
–  
10

1   
–  
10

1   
–  

10

1   
–  
10

Infrastructure 
Losses

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

0   
–   
5

1   
–   
5

1   
–   
5

1   
–   
5

1   
–   
5

1   
–   
5

1   
–   
5

1   
–   
5

1   
–   
5

Sectors Searched 
for Technologies

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

2   
–  
11

4   
–  

11

6   
–  
11

7   
–  

11

8   
–  

11

10  
–  
11

11  
–  

11

11  
–  

11

11  
–  
11

11  
–  

11

11  
–  
11

11  
–  
11

11  
–  

11

11  
–  
11

Technologies 
Recovered / 
Destroyed

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
0

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

0   
–   
1

1   
–   
1

Time PeriodsAttributes
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Table 10.  Distance from End-State 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sectors Searched 
for Terrorists 0 0 0 0 7 6 6 6 6 5 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0

Individuals / Units 
Identified 0 0 0 0 130 103 98 99 91 76 70 59 47 32 15 5 0 0 0 0 0 0 0 0 0

Terrorists 
Captured / Killed 0 0 0 0 3 3 4 4 2 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0

Military Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3

Civilian Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 14 19 21 23 25 26 26 26

Aircraft Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Security Vehicle 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Infrastructure 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Sectors Searched 
for Technologies 0 0 0 0 0 0 0 0 0 0 0 9 7 5 4 3 1 0 0 0 0 0 0 0 0

Technologies 
Recovered / 
Destroyed

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0

Time PeriodsAttributes
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Table 11.  Normalized Distance from End-State 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sectors Searched 
for Terrorists 0.00 0.00 0.00 0.00 0.68 0.58 0.57 0.58 0.53 0.46 0.43 0.37 0.30 0.21 0.12 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Individuals / Units 
Identified 0.00 0.00 0.00 0.00 0.57 0.45 0.43 0.43 0.39 0.33 0.30 0.25 0.20 0.14 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Terrorists 
Captured / Killed 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.80 0.40 0.20 0.17 0.14 0.00 0.00 0.10 0.00 0.00 0.08 0.00 0.07 0.07 0.07 0.07 0.07 0.00

Military Losses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Civilian Losses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.07 0.10 0.11 0.12 0.13 0.13 0.13 0.13

Aircraft Losses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Security Vehicle 
Losses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Infrastructure 
Losses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Sectors Searched 
for Technologies 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.64 0.45 0.36 0.27 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Technologies 
Recovered / 
Destroyed

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Time PeriodsAttributes

 

 



 

 

108

 

 

Table 12.  Weighted Normalized Distance from End-State 
 

 

 

 

 

7.5%
Sectors 
Searched for 
Terrorists

7.5% Individuals / 
Units Identified

15.0% Terrorists 
Captured / Killed

50% 10.0% Military Losses

50% 10.0% Civilian Losses

80% 8.0% Aircraft Losses

20% 2.0% Security Vehicle 
Losses

10.0% Infrastructure 
Losses

7.5%
Sectors 
Searched for 
Technologies

22.5%
Technologies 
Recovered / 
Destroyed

AttributesWeights

100%

30%

40%

30%

25%

75%

25%

25%

25%

50%

25%

50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.000 0.000 0.000 0.000 0.051 0.044 0.043 0.043 0.040 0.035 0.032 0.028 0.022 0.016 0.009 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.043 0.034 0.032 0.032 0.030 0.025 0.023 0.019 0.015 0.010 0.005 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.150 0.150 0.150 0.120 0.060 0.030 0.025 0.021 0.000 0.000 0.015 0.000 0.000 0.012 0.000 0.011 0.011 0.011 0.011 0.011 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.007 0.010 0.011 0.012 0.013 0.013 0.013 0.013

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.061 0.048 0.034 0.027 0.020 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.000

Time Periods

7.5%
Sectors 
Searched for 
Terrorists

7.5% Individuals / 
Units Identified

15.0% Terrorists 
Captured / Killed

50% 10.0% Military Losses

50% 10.0% Civilian Losses

80% 8.0% Aircraft Losses

20% 2.0% Security Vehicle 
Losses

10.0% Infrastructure 
Losses

7.5%
Sectors 
Searched for 
Technologies

22.5%
Technologies 
Recovered / 
Destroyed

AttributesWeights

100%

30%

40%

30%

25%

75%

25%

25%

25%

50%

25%

50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.000 0.000 0.000 0.000 0.051 0.044 0.043 0.043 0.040 0.035 0.032 0.028 0.022 0.016 0.009 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.043 0.034 0.032 0.032 0.030 0.025 0.023 0.019 0.015 0.010 0.005 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.150 0.150 0.150 0.120 0.060 0.030 0.025 0.021 0.000 0.000 0.015 0.000 0.000 0.012 0.000 0.011 0.011 0.011 0.011 0.011 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.007 0.010 0.011 0.012 0.013 0.013 0.013 0.013

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.061 0.048 0.034 0.027 0.020 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.000

Time Periods
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Sectors Searched 
for Terrorists 100% 100% 100% 100% 32% 42% 43% 42% 47% 54% 57% 63% 70% 79% 88% 93% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Individuals / Units 
Identified 100% 100% 100% 100% 43% 55% 57% 57% 61% 67% 70% 75% 80% 86% 94% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Terrorists 
Captured / Killed 100% 100% 100% 100% 0% 0% 0% 20% 60% 80% 83% 86% 100% 100% 90% 100% 100% 92% 100% 93% 93% 93% 93% 93% 100%

No Military 
Losses 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 97% 93% 90% 90% 90% 90% 90% 90% 90% 90%

No Civilian 
Losses 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 96% 93% 90% 89% 88% 87% 87% 87% 87%

No Aircraft 
Losses 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

No Security 
Vehicle Losses 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 90% 90% 90% 90% 90% 90% 90% 90% 90%

No Infrastructure 
Losses 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 80% 80% 80% 80% 80% 80% 80% 80%

Sectors Searched 
for Technologies 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 18% 36% 55% 64% 73% 91% 100% 100% 100% 100% 100% 100% 100% 100%

Technologies 
Recovered / 
Destroyed

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

Overall 100% 100% 100% 100% 76% 77% 78% 80% 87% 91% 92% 87% 91% 94% 72% 74% 76% 72% 73% 72% 72% 72% 72% 72% 95%

61% - 94%25% - 60%0% - 25%

2315 16 17 1811 12 24 25

95% - 100%

19 20 21 227 8 9 10

Time Periods

Attributes 1 2 3 4 5 6 13 14

 

Figure 21.  Table Visualization of Time Series Results 
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Figure 22.  Line Chart Visualization of Results 
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Figure 23.  Effectiveness Measurement Process 
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50%

25%

75%
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50%

Aircraft

Security Vehicles20%

80%

Objective Value Attribute Measure
All base sectors 
searched for terrorists

Sectors searched Number of sectors searched out of 11 total.

All individuals/units 
identified

Individuals/units 
identified

Number of individuals/units positively identified.  The total 
number changes as the scenario progresses, but begins with 
the total military and civilian base population (30 + 195).

All discovered terrorists 
captured/killed

Terrorists 
captured/killed

Number of positively identified terrorists captured/killed.  The 
total number changes as the scenario progresses but begins at 
0.  Note: For this scenario, the number could be as high as 14 
(9 terrorists + 3 car bombers + 2 truck bombers).

Military losses Number of military losses out of a potential total of 30.
Civilian losses Number of civilian losses out of a potential total of 195.

Aircraft losses Number of aircraft losses out of a potential total of 10 (4 
bombers + 4 fighters).

Security vehicle losses Number of security vehicles losses out of a potential total of 10.

No infrastructure losses Infrastructure losses Number of infrastructure losses out of a potential total of 5 (3 
laboratories + 1 fuel depot + 1 command post).

All base sectors 
searched for 
technologies

Sectors searched Number of sectors searched out of 11 total.

All stolen technologies 
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changes as the scenario progresses but starts at 0 and can be 
as high as 3.
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No equipment losses
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End-State
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Terrorists 
Captured / Killed 0 0 0 0 0 0 0 2 3 4 5 5 8 8 8 11 11 11 11 11 11 11 11 13 14

Military Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3

Civilian Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 20 20 20 20 20 20 20

Aircraft Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Security Vehicle 
Losses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Infrastructure 
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Sectors Searched 
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Time PeriodsAttributes

1. Identify the desired end-state
2. Establish certainty equivalent transformation
3. Calculate distance from current system state 

to desired end-state
4. Normalize distance with respect to the end-

state using a ratio preserving transformation
5. Update previous observations using latest 

normalization constant (kj)

XDESIRED
XOBSERVED → XEQUAL
XDIST ANCE = | XEQUAL – XDESIRED |

XNORMALIZED = kjXDISTANCE

kj = 
∑
=

j

i 1
XDISTANCE

1

Measure Aggregation (e.g. Normalization)

Error & Uncertainty (e.g. Kalman Filtering)

Figure 19

Figure 20

Table 5

Table 7

Figure 11

Figure 22

x̂ = Fx + Gu + wx̂ = Fx + Gu + wx̂
Φ = L-1 [(sI – F)-1]

Mk = ΦkPk-1Φk
T + Qk

Kk = MkHT(HMkHT + Rk)-1

Pk = (I – KkH)Mk

Q = E[wwT]
R = E[vvT]

x̂ k = Φk x̂k-1 + Kk(xk
* - HΦk x̂ k-1)x̂ k = Φk x̂k-1 + Kk(xk
* - HΦk x̂ k-1)
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presented in this research also hold.  Additionally, after conducting system observations, 

mathematical techniques, such as that in Figure 11, can be used to assist in aggregation of 

low level data.  Further, probabilistic reasoning techniques, like the Kalman Filter 

presented in this research, can be used to address the error and uncertainty associated 

with effectiveness measurement.  As displayed in Figure 23, the collective measurements 

can then be used to provide insights about the system of interest and specifically, how the 

system is progressing towards the desired end-state. 

To stress a final point, in the scenario used to demonstrate the frameworks 

proposed in this research, a single course-of-action was used.  Specifically, pre-

positioned base security forces patrolled pre-defined areas of responsibility until terrorists 

were encountered.  After encountering terrorists, the base security forces engaged the 

terrorists and pursued them even if pursuit took the base security forces beyond their pre-

defined area of responsibility.  An additional element of the course-of-action was to 

maximize base security force coverage of the entire base (highlighted area in Figure 19).  

This resulted in some base security forces leaving their pre-defined area of responsibility 

to provide support even if terrorists were not encountered.  This course-of-action used is 

notional and is clearly one of many that could have been used to respond to the terrorist 

attack. 

The proposed frameworks as presented were intended for use in assessing the 

effectiveness of a single course-of-action that was being executed.  A natural extension in 

the use of the frameworks, however, is to determine which course-of-action to use among 

a number of developed courses-of-action.  The proposed frameworks provide a 

foundation for developing a common basis for comparison on not only course-of-action 
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fulfillment of the desired end-state but on timeliness of fulfillment as well.  To further 

assist in development of courses-of-action for achievement of a desired end-state, the 

proposed frameworks could be combined with various Operations Research techniques 

such as Response Surface Methodology, to identify common strengths and weaknesses 

among courses-of-action being evaluated, or Linear/Goal Programming, to optimize 

timing and sequencing of action within a selected course-of-action. 
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THEORY OF EFFECTIVENESS MEASUREMENT 
 

V.  CONCLUSIONS 

 

CONTRIBUTIONS & RECOMMENDATIONS 

This dissertation has synthesized elements from the broad field of measurement, 

reviewed and identified limitations of various measurement approaches, and introduced a 

theoretical foundation, as well as a corresponding framework for effectiveness 

measurement.  While the primary motivation for this research was measurement of 

military campaign advancement, effectiveness measurement is of broad interest and 

applicable to many fields of endeavor.  The methods developed in this research address 

the need for a rigorous, mathematically grounded basis for monitoring progress towards 

abstract goals and objectives. 

This research began by exploring fundamental issues related to measurement as 

well as foundational concepts established via Measurement Theory.  These theoretical 

topics were then balanced by an examination of various views on the application of 

measurement.  Next, attention focused on the key driver of this research, Effects-based 

Operations.  Despite the literature in the field of Effects-based Operations being highly 

disjoint, commonalities were identified to establish a foundation for effects concepts.  

Finally, building upon the measurement, Measurement Theory, and Effects-based 

Operations ideas, Measure Theory concepts were introduced, which provided the 

mathematical means for real-world system modeling.  Culmination of these concepts 

resulted in an axiomatic-based Theory of Effectiveness Measurement. 
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To meet the practical needs of measurement application, a probabilistic 

framework to address error and uncertainty associated with effectiveness measurement 

was also introduced.  Numerous techniques exist for probabilistic reasoning.  While each 

technique has advantages and disadvantages, all are suitable to handle the error and 

uncertainty encountered in effectiveness measurement.  However, one established 

approach, Kalman Filtering, stood out as being best suited for mitigating these 

probabilistic problems, as well as being an excellent match for integration with the 

axiomatic-based Theory of Effectiveness Measurement developed in this research.  As a 

final means of making this introduced mathematical construct pragmatic, mechanical 

details on the implementation of the Theory of Effectiveness Measurement were 

demonstrated using a notional scenario. 

While this research introduced a new, comprehensive theory, there are a number 

of areas for further research.  First, this research assumed a course-of-action had been 

developed and was being executed.  The developed effectiveness measurement 

framework then provides feedback to determine the effectiveness of the course-of-action.  

A key step of an effects-based approach, however, is planning, or determining the best 

course-of-action from a number of developed courses-of-action (USJFC, 2006:viii).  

During planning, the developed effectiveness measurement framework could provide a 

common basis for comparison of candidate courses-of-action.  In a similar vein, during 

the planning process, the developed effectiveness measurement framework could be 

combined with Operations Research techniques such as Linear and Goal Programming to 

optimize the sequencing and timing of a selected best course-of-action. 
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Another assumption of this research is that observations are based strictly on 

outward behavioral system attributes.  This passive approach will always have more error 

and uncertainty associated with it since the time between the observed behavior and the 

action that produced the observed behavior will rarely be instantaneous.  If the 

effectiveness measurement framework developed in this research could be linked with 

internal models of the system of interest, not only could the error and uncertainty be 

significantly mitigated, but system state changes from a given action could be forecasted. 

The goal of this research was to provide a framework for effectiveness 

measurement from both a theoretical and practical view.  An axiomatic-based 

measurement theory was presented and a generic measurement methodology explored.  

The most important contribution of this effort is a theory for effectiveness measurement; 

however, there are empirical benefits as well.  The intent was to develop fundamental 

effectiveness measurement principles and to give theoretical, as well as practical 

guidelines for implementation of effectiveness measurement. 

The theory provides a standardized framework for thinking about effects 

regardless of the domain.  The framework includes precise definitions of the qualitative 

concepts within the frameworks, along with their corresponding quantitative notation.  

Additionally, there is a mechanism for interpreting numbers, criteria for selecting 

measures, conditions for comparing measures, theoretical foundations for validating 

measures, as well as approaches for handling uncertainty. 

From an academic standpoint, the most significant contribution is the ‘theory’, 

however, from a practical standpoint, the most important contribution, is meeting the 

needs of the practicing analyst with the proper theory.  In summary, a theoretically-based 
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effectiveness measurement approach provides effects assessment practitioners a level of 

precision on par with the level of precision with which Effects-based Operations are 

conducted. 
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

APPENDIX A: GAME THEORY 

 

Game Theory addresses decision contexts where there are two or more decision 

makers with competing or conflicting objectives and the outcome for each decision 

maker depends on the choices made by the others (Winston, 1994:824).  Additionally, 

each decision maker knows their outcome is influenced by the choices of other decision 

makers which in turn, influences their preferences.  Essentially, Game Theory assists a 

decision maker in arriving at a better decision.  In Game Theory, the decision depends on 

the choices available to the decision maker and the decision maker’s preferences on the 

outcomes of each of those alternatives.  Additionally, the decision maker’s beliefs about 

what actions are available to each of the other decision makers, beliefs about how each of 

those decision makers rank the outcomes of their choices, and beliefs about every other 

decision maker’s beliefs (Luce, 1957:5) also influence the decision at hand. 

Game Theory provides a framework for thinking about strategic interaction and 

helps formulate an optimal strategy by forecasting the outcome of strategic situations 

(Dresher, 1961:1).  Thus, Game Theory concerns games of strategy versus games of pure 

chance such as slot machines or non-interactive games like solitaire.  The idea of a 

general theory of games was introduced by John von Neumann and Oskar Morgenstern in 

1944, in their book, Theory of Games and Economic Behavior.  They describe a game as 

a competitive situation among two or more decision makers, or groups with a common 

objective, conducted under a prescribed set of rules and known outcomes (von Neumann, 

1944:49).  The objective of Game Theory is to determine the best strategy for a given 
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decision maker under the assumption the other decision makers are rational, or 

consistently make decisions in alignment with some well-defined objective, and will 

make intelligent countermoves, where intelligent implies all decision makers have the 

same information and are capable of inferring the same insights from that information 

(von Neumann, 1944:51). 

A cornerstone concept of Game Theory is each decision maker will act to 

maximize their expected outcome.  For example, possible outcomes are generally 

characterized by a numeric representation or on a utility scale.  It is assumed, given a set 

of possible choices and associated outcomes, for any two alternatives, decision makers 

can discern preference or indifference among the alternatives, allowing them to rank the 

set of alternatives with respect to each other.  A key result from von Neumann and 

Morgenstern is there exists a way of assigning utility numbers to the outcomes such that 

the decision maker would always choose the option that maximizes their expected utility 

(Luce, 1957:4).  Thus, while Decision Theory assumes decision makers are self-

interested and selfish, Game Theory extends this to assume everyone else is too. 

Games can be characterized in a wide variety of ways.  Some of the attributes that 

can be used to classify games include players, structure, outcome, interaction, timing, and 

information.  Game Theory typically addresses contexts with n-decision makers, where n 

is two or more.  However, some sources address 1-person games as games against 

‘nature’, which is the realm of Decision Theory. 

Games can be characterized by three basic structures: Simultaneous, Sequential, 

and Repeated.  In Simultaneous games (also known as Static or Stage games), all 

decision makers reveal their decision to other decision makers simultaneously (Myerson, 
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1991:47).  Thus, Simultaneous games amount to trying to forecast the decisions of other 

decision makers.  Even in situations where decisions are not made simultaneously, any 

game where decisions are made without knowledge of other decision maker’s choices are 

considered Simultaneous games. 

Sequential games (also known as Dynamic or Multi-stage games) require a 

sequence of decisions for preferences over a set of alternatives where a different set of 

alternatives is presented at each decision point; usually dependent on decisions made in 

previous stages.  Thus, ordering of decisions is important.  Finally, Repeated games, like 

sequential games, require a sequence of decisions, but each decision point is similar to a 

simultaneous game where choices available and their outcomes may be dependent on 

previous choices.  In contrast to a ‘one-shot’ Simultaneous game, in Repeated games, all 

past decisions for previous decision points are known to all other decision makers 

(Fudenberg, 1993:107). 

Another attribute of games concerns outcome.  A constant-sum game is where the 

sum of the outcomes for all decision makers is constant (Winston, 1994:827).  A common 

instantiation is where the constant is zero.  Thus, a zero-sum game is one where the 

decision makers’ interests are in direct conflict and what one decision maker ‘loses’, 

another decision maker ‘wins’.  A constant-sum game is in contrast to a variable sum 

game, or general-sum game, where the sum of the outcomes for all decision makers is not 

constant (Owen, 1968:136). 

Interaction is another way to categorize games.  Interaction addresses the level of 

cooperation among decision makers.  In a non-cooperative game, each decision maker 

pursues their own interests (Luce, 1957:89).  In cooperative games, however, decision 
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makers are free to form coalitions and make agreements, essentially combining their 

decision making problems (Myerson, 1991:244). 

Table 13.  Attributes of Games 

 

Yet another way to classify Game Theory problems is by time.  In general, Game 

Theory does not put a time constraint on the decision maker to make a decision at a 

decision point.  However, if the passage of time does impact the expected outcome, the 

game is referred to as a Duel (Dresher, 1961:128).  Another type of game where time is a 

factor is a differential game.  Differential games address multi-decision maker problems 

in dynamic situations where the position, or state, of the players develops continuously in 

time (Friedman, 1971:19). 

A final way to characterize games is by information.  A game of perfect 

information is one where each decision maker has the same information.  This includes 

information on all previous decisions for sequential games (Shubik, 1982:232).  If the 

game does not allow for perfect information, it is termed a game of imperfect information 

or a Bayesian game (Fudenberg, 1993:209).  Finally, in a game of incomplete 

Attribute Game Type 
Players 1-player 

n-players 

Structure 
Simultaneous (Static or One-stage) 

Sequential (Dynamic or Multi-stage) 
Repeated 

Outcome Constant-sum 
Variable-sum 

Interaction Cooperative 
Non-cooperative 

Time 
Duel 

Non-duel 
Differential 

Information 
Perfect 

Incomplete 
Imperfect 
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information, only some elements of information are unknown.  Table 13 summarizes 

these various game attributes. 

0

1 2 3

2 1 3 2

0

1 2 3

2 1 3 2

 
Figure 24.  Extensive Form (Game Tree) 

Regardless of game type, a conceptual model is needed in order to analyze a 

game.  There are three primary models, or forms, that can be used: extensive form, 

coalitional form, and strategic form.  Games in extensive form are usually depicted as a 

multi-player decision tree (Luce, 1957:40) as shown in Figure 24.  The extensive form 

describes sequentially what each decision maker might do and the possible outcomes.  

For example, in Figure 24, the number at each node represents the player making the 

decision.  By convention, node ‘0’ is a chance node.  In the literature, the lesser discussed 

of the three forms is the coalitional form, which is focused on examining the value of 

belonging to a coalition (Shubik, 1983:4). 

Games in strategic form, or normal form, are the most common for examining 

games.  In strategic form, in contrast to the extensive form, details of the game, such as 

position and move, are not shown.  The key aspects available in the strategic form are the 

decision makers, their strategies, and the possible outcomes (Luce, 1957:53).  All the 

forms generally assume the number of decision makers is finite.  Additionally, all the 

forms usually assume the number of strategies available to each decision maker is also 
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finite.  However, extensions with the strategic form can accommodate a decision maker 

with infinite strategies (Fudenberg, 1993:5).  Mathematically, the simplest way to 

describe a game is the strategic form.  Thus, the strategic form will be the focus in the 

remainder of this review. 

A specific strategic form game can be formalized by three elements: the set of 

decision makers or players i ∈ I, which is assumed to be finite (i.e. I = { 1, 2,…, n }); the 

set of alternatives available to each of the decision makers, or the pure strategy space Si = 

{ si1,…, sim } m < ∞; and the outcome functions ui : Si → R giving player i’s von 

Neumann-Morgenstern utility ui(s) where s = ( s1w, s2x,…, siy,…, snz ) is the strategy 

profile, or specific instance of choices made by all decision makers (Fudenberg, 1993:4). 

Many n-person decision contexts with competing decision makers have multiple, 

conflicting objectives.  Typically, however, the objectives will have a common ordering 

among all the decision makers which has the effect of polarizing the decision context and 

essentially making it a 2-person game (Isaacs, 1965:306).  Examples of this phenomenon 

are numerous.  A historical example is the unlikely alliance of the USA, Soviet Union, 

and China during World War II.  Although these ‘players’ had fundamental differences at 

the time, an important, shared objective brought them together, polarizing the situation.  

Additionally, simplifying an n-person (n > 2) game to a 2-peron game, allows a 

characterization of the strategic form to be displayed as ‘game matrix’ (Fudenberg, 

1993:5). 

The following Gridiron game (Table 14) is used to demonstrate additional 

properties of games.  The Gridiron game is a non-cooperative, 2-person, simultaneous, 

zero-sum, non-duel game with perfect information.  The two players are Offense and 
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Defense.  Offense has four alternatives, or pure strategies, to choose from and Defense 

has three.  A pure strategy is a predetermined sequence of moves and countermoves made 

during the game (Kaplan, 1982:105).  In this game, Offense knows its pure strategies, the 

pure strategies of Defense, and the outcome when one pure strategy is played against 

another.  Defense has the same information.  When all players know the same fact, it is 

called mutual knowledge.  Further, Offense knows Defense knows what it knows and 

Defense knows Offense knows what it knows.  When all players know a fact and all 

know that all know it, it is called common knowledge (Fudenberg, 1993:541). 

Table 14.  Gridiron Game 

  

If some pure strategy is strictly preferred over another strategy s, regardless of 

what other players do, s is a dominating strategy (Luce, 1957:79).  For Offense, ‘Medium 

Pass’ is always preferred over ‘Short Pass’.  Thus, ‘Short Pass’ is dominated.  If there 

were a strategy, s, that dominated all other strategies regardless of what other players 

were doing, s would be a dominant strategy (Owen, 1968:25).  Neither Offense nor 

Defense has a dominant strategy.  If both had dominant pure strategies, their intersection 

would be the classic saddle point (von Neumann, 1944:95). 

If no players have a dominant solution, they must select the ‘best’ strategy based 

on what they know (and what they think all the other players know).  However, if one 

player always chooses the same pure strategy or chooses pure strategies in a fixed order, 

  Defense 
  Run Pass Blitz 

Run -3 5 5 
Short Pass 3 0 3 
Medium Pass 7 0 6 Offense 

Long Pass 10 0 -10 
In yards gained by Offense 
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opponents in time will recognize the pattern and exploit the information to defeat the 

player.  Thus, when no dominant pure strategy exists, the most effective strategy is a 

mixed strategy (Owen, 1968:16).  A mixed strategy is defined by a probability 

distribution over the set of pure strategies.  Under a mixed strategy, each player will form 

a probabilistic assessment over what other players will do.  Thus, when a player chooses 

one of their own strategies, they are choosing a lottery over other player’s mixed strategy 

profiles.  Further, a player can interpret other player’s mixed strategies as expectations of 

how they are likely to play (Luce, 1957:74). 

The notation presented thus far can be extended as follows: A mixed strategy σi is 

a probability distribution over the pure strategies and σ is the space of mixed strategy 

profiles.  σi (si) is the probability that σi assigns to si where ∑
i

σi (si) = 1 and  σi (si) ≥ 0.  

Additionally, ui(σi) = player i’s outcome under the mixed strategy (Fudenberg, 1993:5). 

Assumed in Game Theory is that players will select the strategy that maximizes 

their outcome given the other players’ strategies.  If every player is playing their best 

strategy, there is no incentive for any player to unilaterally change their strategy and thus, 

the players are at strategic equilibrium or Nash equilibrium (Fudenberg, 1993:11).  An 

important result for mixed strategies is every finite game has at least one strategic 

equilibrium, which was proved by John Nash in his dissertation, Non-cooperative games 

(1950).  This equilibrium, or optimum set of strategies, can be found using the Minimax 

Theorem.  The key result of this theorem is when one player attempts to minimize their 

opponent’s maximum outcome, while their opponent attempts the contrary; the result is 

the minimum of the maximum outcomes equals the maximum of the minimum outcomes 

(von Neumann, 1944:93). 
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A solution is a description of an outcome that may emerge from a game.  The 

optimal solution guaranteed by the Minimax Theorem can be solved via linear 

programming for 2-player, constant-sum games in a program of the form shown in Figure 

25, which yields the optimal strategy for the column player.  The row player strategy can 

be found via the dual solution (Winston, 1994:840). 

 
Figure 25.  Program for Column Player's Strategy 

The Gridiron game resulted in the following mixed strategies for Offense (0.50, 0, 

0.31, 0.19) and for Defense (0.31, 0.63, 0.06).  Thus, Game Theory is ‘conditionally 

normative’ and suggests how each side ought to play to achieve certain ends (Luce, 

1957:63).  Here, Offense should Run 50% of the time, never play the Short Pass, play 

Medium Pass 31% of the time, and go Long 19% of the time.  The Defensive strategies 

can be interpreted in a similar manner.  Additionally, the value of the game, z, is 2.5.  By 

convention, the row player maximizes and the column player minimizes.  Thus, the game 

value suggests Offense is expected to gain 2.5 yards, on average, on each play of 

Gridiron. 

The Gridiron game demonstrated a zero-sum game solution.  For non-constant 

sum games, solutions in pure strategies can be found via the algorithm in Figure 26.  

However, not all non-constant sum games have solutions in pure strategies.  Although 

every game has at least one equilibrium point in mixed strategies, finding these points for 

maximize: z = -yn+1 
subject to: u11y1 + u12y2 +…+ u1nyn - yn+1 ≤ 0 
  u21y1 + u22y2 +…+ u2nyn - yn+1 ≤ 0 
  ····················································· 
  um1y1 + um2y2 +…+ umnyn - yn+1 ≤ 0 
                 y1 + y2 +…+ yn = 1 
                   y1, y2,…, yn > 0 
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non-constant sum games requires more complex solution techniques such as the reverse 

search algorithm for polyhedral vertex enumeration and convex hull problems (Avis, 

2002:350). 

 

 

Figure 26.  Non-constant Sum Pure Strategy Solution Algorithm 
(Kaplan, 1982:154) 

The aim of the above review was to illustrate the benefits and uses of Game 

Theory.  Specifically, Game Theory is a mathematically robust approach to thinking 

strategically in conflict situations involving other decision-making entities with 

conflicting objectives. 

For player I with outcome matrix A and player II with outcome matrix B: 
 
1.  In each column of A, underline the largest value in the column. 
2.  In each row of B, underline the largest value in each row. 
3.  Positions ij in A and B in which both aij and bij were underlined are 

equilibrium points in pure strategies. 
 
Example: 

0  0  8
2  1  0
7 2 0

0  5 1
6 0  0
0  3 1

i
j
k

i
j
k

x  y  z x  y  z
Player I

Outcome
Matrix

Player II
Outcome

Matrix
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

APPENDIX B: RATIO NORMALIZATION 

 

The purpose of this appendix is to illustrate a normalization technique which 

makes dissimilar measures commensurate for the purposes of aggregation, while 

preserving the original ratio level meaning of the individual measurements.  The example 

concerns a notional system with five, context relevant attributes and their associated 

measures.  In line with the algorithm in Figure 11, it is assumed a desired end-state has 

been specified and equal interval measurement scales have been developed for the five 

system attributes.  System measurements are taken at five points in time.  The desired 

system attribute assignments, as well as the equal interval transformations for each of the 

five system attributes are shown in Table 15.  Further, Table 16 shows the distance from 

the desired end-state value for each attribute.  Using the values in Table 16 as inputs to 

the equation in step 5 of Figure 11, the normalization constants (kj) for each system 

attribute, at each time step (j) are shown in Table 17. 

As seen in Table 17, the normalization ‘constants’ are changing at each time step 

with each new system observation.  Because the constants are changing from one time 

step to another, normalized values for the current system state are not comparable to 

normalized values of previous system states based on different constants.  In order to 

compare the current state to previous system states, all previous attribute values must be 

normalized using the calculated constants from the most recent system observation.  For 

the five observations in this illustration, the result is shown in Table 18.  While the values 

shown in Observation4 of Table 18 are normalized within each attribute dimension, the 
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attributes are not yet normalized with respect to each other.  This is achieved by scaling 

the values in each attribute dimension relative to a common system observation.  For this 

illustration, Observation0 is used as the common reference and the results are shown in 

Table 19.  Additionally, Table 19 shows the aggregated attribute observations (assuming 

equal weighting among the attributes) using the Power metric for r = 1 (rectilinear) and r 

= 2 (straight-line). 

Table 15.  Observed System Attribute Assignments 
System Attribute: A B C D E

XDESIRED 10 2 100 15 0.5
Time0 2 100 80 25 10
Time1 4 75 85 20 5
Time2 6 50 92 15 1
Time3 8 10 96 10 0.7
Time4 9 5 98 12 0.2  

Table 16.  Attribute Distance from Desired 
System Attribute: A B C D E

XDESIRED 0 0 0 0 0
Time0 8 98 20 10 9.5
Time1 6 73 15 5 4.5
Time2 4 48 8 0 0.5
Time3 2 8 4 5 0.2
Time4 1 3 2 3 0.3  

Table 17.  System Attribute Normalization Constants 
System Attribute: A B C D E

XDESIRED 0.000 0.000 0.000 0.000 0.000
Time0 0.125 0.010 0.050 0.100 0.105
Time1 0.071 0.006 0.029 0.067 0.071
Time2 0.056 0.005 0.023 0.067 0.069
Time3 0.050 0.004 0.021 0.050 0.068
Time4 0.048 0.004 0.020 0.043 0.067  
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Table 18.  Normalized Values for each System Observation 
Observation0 A B C D E

XDESIRED 0 0 0 0 0
Time0 1 1 1 1 1

Observation1 A B C D E
XDESIRED 0 0 0 0 0

Time0 0.57 0.57 0.57 0.67 0.68
Time1 0.43 0.43 0.43 0.33 0.32

Observation2 A B C D E
XDESIRED 0 0 0 0 0

Time0 0.44 0.45 0.47 0.67 0.66
Time1 0.33 0.33 0.35 0.33 0.31
Time2 0.22 0.22 0.19 0.00 0.03

Observation3 A B C D E
XDESIRED 0 0 0 0 0

Time0 0.40 0.43 0.43 0.50 0.65
Time1 0.30 0.32 0.32 0.25 0.31
Time2 0.20 0.21 0.17 0.00 0.03
Time3 0.10 0.04 0.09 0.25 0.01

Observation4 A B C D E
XDESIRED 0 0 0 0 0

Time0 0.38 0.43 0.41 0.43 0.63
Time1 0.29 0.32 0.31 0.22 0.30
Time2 0.19 0.21 0.16 0.00 0.03
Time3 0.10 0.03 0.08 0.22 0.01
Time4 0.05 0.01 0.04 0.13 0.02  

Table 19.  Normalized State Values 
System Attribute: A B C D E r = 1 r = 2

Time0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Time1 0.75 0.74 0.75 0.50 0.47 0.64 0.66
Time2 0.50 0.49 0.40 0.00 0.05 0.29 0.36
Time3 0.25 0.08 0.20 0.50 0.02 0.21 0.27
Time4 0.13 0.03 0.10 0.30 0.03 0.12 0.15  
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

APPENDIX C: KALMAN FILTERING 

 

The following example is designed to illustrate the detailed mechanics involved in 

implementing a Kalman filter.  The notional system of interest, X, will have two 

attributes, A and B.  No model is available for X and the underlying behavior and 

relationships between A and B are unknown.  A 2nd order Kalman filter will be used to 

estimate the state of the system based on observations, or measurements, of the system’s 

two attributes. 

It is assumed numerous measurements will be taken, thus, process noise can be 

set to zero.  Additionally, it is assumed there is no a priori information on how to 

initialize the filter.  These two assumptions greatly simplify the filter state estimate 

calculations.  The matrix form of a second-order Kalman filter for a single system 

attribute (14) in expanded form is: 
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The common term, )ˆ5.ˆˆ( 1
2

11
*

−−− −−− kskskk xTxTxx &&& , is the residual between the most current 

measurement and a projection of the preceding estimate to the current time (Zarchan, 

2005:113).  Thus, making the substitution resk = )ˆ5.ˆˆ( 1
2

11
*

−−− −−− kskskk xTxTxx &&&  produces 

the following set of recursive equations: 
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Additionally, the above two assumptions allow the gains, K, to be calculated via the 

following equations for k = 1, 2,…, n (Zarchan, 2005:145): 
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The above equations, (16) and (17), were implemented in a Microsoft® EXCEL® 

spreadsheet and used on the notional system attribute measurements with Ts = 1 as shown 

in Table 20. 

Table 20.  Notional Data and Results 
Time Measurement #

Period k K1k K2k K3k A B A B xk x_dotk x_wdotk xk x_dotk x_wdotk

0 1 1.0000 3.0000 10.0000 10.0000 1000.0000 10.0000 1000.0000 10.0000 30.0000 100.0000 1000.0000 3000.0000 10000.0000
1 2 1.0000 2.2500 2.5000 10.0972 927.7364 -79.9028 -8072.2636 10.0972 -49.7813 -99.7570 927.7364 -5162.5930 -10180.6589
2 3 1.0000 1.5000 1.0000 10.9337 907.6948 100.4963 10232.8808 10.9337 1.2061 0.7393 907.6948 6.0693 52.2219
3 4 0.9500 1.0500 0.5000 11.3544 833.2678 -1.1551 -106.6071 11.4122 0.7326 0.1618 838.5982 -53.6463 -1.0817
4 5 0.8857 0.7714 0.2857 11.7389 750.5178 -0.4867 -33.8932 11.7946 0.5189 0.0227 754.3913 -80.8742 -10.7654
5 6 0.8214 0.5893 0.1786 11.8059 733.1754 -0.5189 65.0409 11.8986 0.2358 -0.0700 721.5609 -53.3119 0.8490
6 7 0.7619 0.4643 0.1190 12.2847 690.6145 0.1853 21.9410 12.2406 0.2519 -0.0479 685.3905 -42.2760 3.4610
7 8 0.7083 0.3750 0.0833 12.4315 669.7430 -0.0370 24.8980 12.4423 0.1901 -0.0510 662.4811 -29.4782 5.5359
8 9 0.6606 0.3091 0.0606 13.6162 650.3141 1.0093 14.5433 13.2737 0.4511 0.0102 645.3782 -19.4471 6.4173
9 10 0.6182 0.2591 0.0455 14.1758 635.6134 0.4460 6.4738 14.0055 0.5768 0.0305 633.1416 -11.3526 6.7115
10 11 0.5804 0.2203 0.0350 14.7179 616.8418 0.1203 -8.3031 14.6674 0.6338 0.0347 620.3256 -6.4700 6.4212
11 12 0.5467 0.1896 0.0275 15.7338 575.7121 0.4153 -41.3541 15.5455 0.7472 0.0461 594.4578 -7.8879 5.2851
12 13 0.5165 0.1648 0.0220 16.4561 539.0188 0.1403 -50.1937 16.3882 0.8164 0.0492 563.2882 -10.8764 4.1820
13 14 0.4893 0.1446 0.0179 17.1267 502.1468 -0.1024 -52.3559 17.1790 0.8507 0.0473 528.8858 -14.2674 3.2470
14 15 0.4647 0.1279 0.0147 18.2221 485.6167 0.1687 -30.6252 18.1318 0.9196 0.0498 502.0102 -14.9386 2.7967
15 16 0.4424 0.1140 0.0123 18.8789 476.9400 -0.1974 -11.5299 18.9889 0.9469 0.0474 483.3691 -13.4560 2.6554
16 17 0.4221 0.1022 0.0103 19.5474 431.2822 -0.4121 -39.9587 19.7856 0.9522 0.0431 454.3749 -14.8831 2.2430
17 18 0.4035 0.0921 0.0088 21.3488 390.6959 0.5894 -49.9174 20.9972 1.0496 0.0483 420.4712 -17.2377 1.8051
18 19 0.3865 0.0835 0.0075 22.6429 376.6328 0.5719 -27.5032 22.2920 1.1456 0.0526 393.5070 -17.7280 1.5983
19 20 0.3708 0.0760 0.0065 23.2938 366.2288 -0.1701 -10.3494 23.4009 1.1853 0.0515 372.7409 -16.9159 1.5311
20 21 0.3563 0.0695 0.0056 24.5539 360.5393 -0.0580 3.9488 24.5913 1.2328 0.0512 357.9975 -15.1105 1.5534
21 22 0.3429 0.0637 0.0049 24.9328 327.2480 -0.9168 -16.4157 25.5353 1.2255 0.0466 338.0350 -14.6033 1.4723
22 23 0.3304 0.0587 0.0043 26.8109 304.6944 0.0268 -19.4734 26.7930 1.2738 0.0468 317.7331 -14.2740 1.3877
23 24 0.3188 0.0542 0.0038 29.1431 282.1684 1.0529 -21.9845 28.4258 1.3776 0.0508 297.1433 -14.0786 1.3031
24 25 0.3080 0.0503 0.0034 32.0189 258.3226 2.1900 -25.3936 30.5035 1.5385 0.0583 275.8941 -14.0517 1.2163
25 26 0.2979 0.0467 0.0031 33.8027 235.7770 1.7316 -26.6735 32.5870 1.6776 0.0636 254.5039 -14.0811 1.1349

Estimates of BKalman Gains Estimates of AObservation xk * resk
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26 27 0.2885 0.0435 0.0027 35.5963 220.3984 1.2999 -20.5918 34.6714 1.7978 0.0671 235.0505 -13.8423 1.0785
27 28 0.2796 0.0406 0.0025 37.2554 198.8763 0.7526 -22.8712 36.7131 1.8955 0.0690 215.3537 -13.6933 1.0222
28 29 0.2712 0.0380 0.0022 38.9933 188.5023 0.3501 -13.6692 38.7381 1.9778 0.0698 198.4646 -13.1911 0.9918
29 30 0.2633 0.0357 0.0020 41.1540 185.9133 0.4032 0.1439 40.8570 2.0620 0.0706 185.8073 -12.1942 0.9921
30 31 0.2559 0.0335 0.0018 39.1087 192.3844 -3.8455 18.2753 41.9703 2.0036 0.0635 178.7851 -10.5891 1.0256
31 32 0.2488 0.0316 0.0017 39.0853 192.5722 -4.9204 23.8635 42.7813 1.9117 0.0553 174.6467 -8.8099 1.0654
32 33 0.2422 0.0298 0.0015 38.7025 201.7955 -6.0182 35.4260 43.2633 1.7877 0.0461 174.9486 -6.6890 1.1196
33 34 0.2359 0.0282 0.0014 37.7542 209.9635 -7.3199 41.1440 43.3477 1.6278 0.0359 178.5234 -4.4111 1.1772
34 35 0.2299 0.0266 0.0013 37.6724 216.1331 -7.3210 41.4322 43.3106 1.4686 0.0264 184.2244 -2.1302 1.2305
35 36 0.2242 0.0252 0.0012 37.4115 225.0739 -7.3809 42.3644 43.1379 1.3087 0.0177 192.2058 0.1700 1.2807
36 37 0.2187 0.0240 0.0011 36.9120 231.7934 -7.5434 38.7772 42.8055 1.1456 0.0094 201.4981 2.3800 1.3232
37 38 0.2136 0.0228 0.0010 35.7966 234.3232 -8.1592 29.7836 42.2133 0.9693 0.0012 210.9003 4.3814 1.3533
38 39 0.2086 0.0217 0.0009 34.4374 245.3459 -8.7458 29.3876 41.3585 0.7809 -0.0070 222.0894 6.3715 1.3809
39 40 0.2039 0.0206 0.0009 33.8877 257.3322 -8.2482 28.1808 40.4540 0.6036 -0.0142 234.8980 8.3342 1.4054
40 41 0.1994 0.0197 0.0008 33.4984 260.3816 -7.5521 16.4467 39.5445 0.4407 -0.0203 247.2147 10.0634 1.4187
41 42 0.1951 0.0188 0.0008 31.9890 270.8083 -7.9860 12.8208 38.4169 0.2702 -0.0264 260.4889 11.7232 1.4284
42 43 0.1910 0.0180 0.0007 31.1188 278.9536 -7.5551 6.0273 37.2311 0.1081 -0.0317 274.0774 13.2600 1.4327
43 44 0.1870 0.0172 0.0007 30.4596 280.6821 -6.8637 -7.3717 36.0397 -0.0416 -0.0362 286.6751 14.5659 1.4278
44 45 0.1832 0.0165 0.0006 30.4336 284.4283 -5.5464 -17.5266 34.9637 -0.1691 -0.0396 298.7436 15.7051 1.4170
45 46 0.1796 0.0158 0.0006 30.0575 295.9551 -4.7173 -19.2022 33.9277 -0.2832 -0.0423 311.7089 16.8191 1.4059
46 47 0.1761 0.0151 0.0005 29.7373 300.7992 -3.8860 -28.4317 32.9391 -0.3844 -0.0445 324.2248 17.7944 1.3905
47 48 0.1727 0.0145 0.0005 28.3917 303.6619 -4.1408 -39.0526 31.8173 -0.4891 -0.0466 335.9699 18.6170 1.3706
48 49 0.1695 0.0140 0.0005 28.2124 311.5005 -3.0926 -43.7717 30.7809 -0.5788 -0.0481 347.8547 19.3759 1.3495
49 50 0.1663 0.0134 0.0005 27.2388 319.6022 -2.9392 -48.3032 29.6892 -0.6664 -0.0494 359.8709 20.0763 1.3277
50 51 0.1633 0.0129 0.0004 27.0393 332.4836 -1.9588 -48.1275 28.6781 -0.7411 -0.0502 372.7507 20.7815 1.3071
51 52 0.1604 0.0125 0.0004 26.5488 346.3668 -1.3631 -47.8190 27.6932 -0.8083 -0.0508 386.5148 21.4929 1.2879
52 53 0.1576 0.0120 0.0004 26.4572 362.8238 -0.4024 -45.8278 26.7961 -0.8639 -0.0509 401.4286 22.2305 1.2704
53 54 0.1549 0.0116 0.0004 26.3184 376.6544 0.4117 -47.6398 25.9705 -0.9101 -0.0508 416.9146 22.9492 1.2532
54 55 0.1523 0.0112 0.0003 25.4977 388.2686 0.4626 -52.2218 25.1055 -0.9557 -0.0506 432.5376 23.6188 1.2354
55 56 0.1498 0.0108 0.0003 24.9223 405.0131 0.7978 -51.7610 24.2439 -0.9977 -0.0504 449.0224 24.2956 1.2186
56 57 0.1473 0.0104 0.0003 24.2614 405.5084 1.0404 -68.4189 23.3743 -1.0372 -0.0500 463.8482 24.8007 1.1975
57 58 0.1449 0.0101 0.0003 23.3611 413.2443 1.0490 -76.0034 22.4641 -1.0767 -0.0497 478.2314 25.2320 1.1753
58 59 0.1427 0.0098 0.0003 23.0711 420.2371 1.7086 -83.8139 21.6063 -1.1098 -0.0493 492.0949 25.5899 1.1520
59 60 0.1404 0.0094 0.0003 22.183 430.4876 1.7106 -87.7733 20.7121 -1.1429 -0.0488 505.9350 25.9134 1.1288
60 61 0.1383 0.0091 0.0003 21.3 436.7222 1.7553 -95.6906 19.7876 -1.1756 -0.0484 519.1813 26.1675 1.1047
61 62 0.1362 0.0089 0.0002 21.013 456.7506 2.4250 -89.1505 18.9180 -1.2025 -0.0478 533.7602 26.4827 1.0833
62 63 0.1342 0.0086 0.0002 20.912 460.7689 3.2199 -100.0156 18.1236 -1.2227 -0.0470 547.3667 26.7073 1.0604
63 64 0.1322 0.0083 0.0002 20.036 465.9368 3.1585 -108.6674 17.2949 -1.2434 -0.0464 560.2395 26.8630 1.0367
64 65 0.1303 0.0081 0.0002 19.091 471.0184 3.0622 -116.6025 16.4273 -1.2650 -0.0457 572.4300 26.9577 1.0123
65 66 0.1284 0.0078 0.0002 18.874 480.7311 3.7347 -119.1628 15.6190 -1.2814 -0.0450 584.5908 27.0356 0.9886
66 67 0.1266 0.0076 0.0002 18.201 493.2815 3.8860 -118.8392 14.8071 -1.2968 -0.0442 597.0735 27.1192 0.9659
67 68 0.1249 0.0074 0.0002 18.111 496.1271 4.6226 -128.5485 14.0654 -1.3069 -0.0434 608.6247 27.1340 0.9424
68 69 0.1232 0.0072 0.0002 17.98 504.2782 5.2435 -131.9517 13.3826 -1.3125 -0.0425 619.9792 27.1275 0.9193
69 70 0.1215 0.0070 0.0002 17.818 511.3157 5.7687 -136.2507 12.7497 -1.3147 -0.0415 631.0125 27.0942 0.8965
70 71 0.1199 0.0068 0.0002 16.965 520.7042 5.5508 -137.8507 12.0797 -1.3184 -0.0406 642.0295 27.0531 0.8743
71 72 0.1183 0.0066 0.0002 16.959 540.7521 6.2184 -128.7677 11.4767 -1.3179 -0.0396 654.2859 27.0752 0.8544
72 73 0.1168 0.0064 0.0001 16.247 558.7942 6.1079 -122.9942 10.8522 -1.3182 -0.0387 667.4262 27.1374 0.8362
73 74 0.1153 0.0063 0.0001 15.491 578.9129 5.9761 -116.0688 10.2036 -1.3194 -0.0379 681.6015 27.2455 0.8197
74 75 0.1138 0.0061 0.0001 15.474 581.0453 6.6085 -128.2116 9.6174 -1.3169 -0.0370 694.6637 27.2817 0.8022
75 76 0.1124 0.0060 0.0001 15.146 601.7007 6.8640 -120.6458 9.0535 -1.3131 -0.0361 708.7858 27.3655 0.7863
76 77 0.1110 0.0058 0.0001 15.008 622.7958 7.2860 -113.7487 8.5312 -1.3069 -0.0352 723.9167 27.4916 0.7719
77 78 0.1097 0.0057 0.0001 14.757 639.5241 7.5497 -112.2702 8.0347 -1.2993 -0.0342 739.4822 27.6282 0.7583
78 79 0.1083 0.0055 0.0001 14.154 640.7331 7.4359 -126.7564 7.5240 -1.2925 -0.0334 753.7561 27.6867 0.7434
79 80 0.1071 0.0054 0.0001 13.712 657.9354 7.4976 -123.8791 7.0175 -1.2855 -0.0325 768.5523 27.7629 0.7294
80 81 0.1058 0.0053 0.0001 13.637 679.4352 7.9208 -117.2447 6.5537 -1.2764 -0.0317 784.2754 27.8760 0.7167
81 82 0.1046 0.0051 0.0001 13.348 706.1581 8.0868 -106.3516 6.1072 -1.2665 -0.0308 801.3884 28.0469 0.7055
82 83 0.1034 0.0050 0.0001 13.256 727.8767 8.4305 -101.9114 5.6967 -1.2551 -0.0300 819.2533 28.2416 0.6952
83 84 0.1022 0.0049 0.0001 12.818 738.1386 8.3914 -109.7039 5.2842 -1.2440 -0.0291 836.6310 28.3998 0.6845
84 85 0.1011 0.0048 0.0001 12.497 754.4575 8.4716 -110.9155 4.8817 -1.2326 -0.0283 854.1648 28.5537 0.6740
85 86 0.0999 0.0047 0.0001 12.042 780.5586 8.4075 -102.4969 4.4751 -1.2217 -0.0276 872.8129 28.7486 0.6647
86 87 0.0988 0.0046 0.0001 11.794 800.8892 8.5546 -101.0046 4.0851 -1.2101 -0.0268 891.9111 28.9517 0.6558
87 88 0.0978 0.0045 0.0001 11.747 809.2624 8.8856 -111.9282 3.7303 -1.1973 -0.0261 910.2484 29.1072 0.6463
88 89 0.0967 0.0044 0.0001 12.842 737.2199 10.3222 -202.4589 3.5182 -1.1782 -0.0252 920.0987 28.8686 0.6296
89 90 0.0957 0.0043 0.0001 13.038 729.5463 10.7105 -219.7357 3.3522 -1.1576 -0.0244 928.2568 28.5585 0.6121
90 91 0.0947 0.0042 0.0001 13.347 695.5929 11.1646 -261.5285 3.2395 -1.1353 -0.0235 932.3604 28.0763 0.5919
91 92 0.0937 0.0041 0.0001 14.45 630.0393 12.3579 -330.6933 3.2503 -1.1082 -0.0226 929.7489 27.3138 0.5673
92 93 0.0927 0.0040 0.0001 15.203 588.4304 13.0725 -368.9160 3.3430 -1.0783 -0.0216 923.1374 26.4018 0.5406
93 94 0.0918 0.0039 0.0001 15.749 578.244 13.4952 -371.5655 3.4925 -1.0470 -0.0207 915.7060 25.4835 0.5146
94 95 0.0909 0.0038 0.0001 16.665 559.0496 14.2296 -382.3972 3.7280 -1.0130 -0.0197 906.7032 24.5276 0.4887
95 96 0.0899 0.0038 0.0001 17.865 546.6477 15.1602 -384.8274 4.0688 -0.9756 -0.0187 896.8600 23.5665 0.4634
96 97 0.0891 0.0037 0.0001 18.766 498.1982 15.6819 -422.4600 4.4805 -0.9364 -0.0177 883.0338 22.4703 0.4364
97 98 0.0882 0.0036 0.0001 20.284 468.3824 16.7486 -437.3399 5.0122 -0.8936 -0.0167 867.1542 21.3246 0.4094
98 99 0.0873 0.0035 0.0001 22.273 430.9043 18.1628 -457.7791 5.6965 -0.8459 -0.0156 848.7044 20.1105 0.3819
99 100 0.0865 0.0035 0.0001 24.11 405.8956 19.2677 -463.1102 6.5093 -0.7945 -0.0145 828.9496 18.8822 0.3549

100 101 0.0857 0.0034 0.0001 24.529 401.7415 18.8212 -446.2678 7.3200 -0.7448 -0.0134 809.7771 17.7155 0.3297  
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Figure 27.  2nd Order Kalman Filter Estimate of a Two Attribute Notional System 

Figure 27 highlights the results of the 2nd order Kalman filter on the notional, two 

attribute system.  Although the true system state is unknown, the filter diverges from the 

measurements.  As previously noted, this occurs from use of a linear estimator on non-

linear behavior.  Also previously noted, this divergence can be addressed by increasing 

the sampling rate.  Figure 28 shows the improved filter performance using a sampling 

rate of Ts = 3.  vs. Ts = 1. 

 

 

 

 

 

 

 

Figure 28.  2nd Order Kalman Filter Estimate with Increased Sampling 
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THEORY OF EFFECTIVENESS MEASUREMENT 

 

APPENDIX D: IMPLEMENTATION RESULTS (BAR CHARTS) 

 

The following twenty-five figures highlight the results of the illustrative example 

presented in this research.  The data in the charts was derived via the developed 

effectiveness measurement framework (Figure 23).  The figures provide time 

independent views of end-state fulfillment, at one minute intervals, as the scenario 

unfolds. 
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